P R B X

Table of Contents

1. Introduction	P1
2. DC/DC converter features	P1
3. Technical specification	P3
4. Output voltage adjustment	P7
5. Remote sense	P9
6. Input source impedance	P10
7. Output over current protection	P10
8. Output short circuitry protection	P10
9. Output over voltage protection	P10
10. Over temperature protection	P11
11. Thermal considerations	P11
12. Heat-sink considerations	P12
13. Remote on/off control	P14
14. EMS considerations	P15
15. Mechanical drawing	P15
16. Recommended pad layout	P15
17. Line protection & EMC considerations	P16
18. Line protections	P17
19. EMS considerations	P18
20. EMI considerations	P19
21. EMI test results	P26
22. Soldering considerations	P35
23. Packaging information	P35
24. Safety and installation instruction	P36
25. MTBF and reliability	P36
26. Characteristic curves	P37

POWERBOX Industrial Line PQAE150W Series Up to 132W 4:1 Single Output High Performance DC/DC Converter Manual

1. Introduction

The PQAE150W series offer 132 watts of output power in an industry standard quarter-brick package and footprint. PAE150W series have 4:1 ultra wide input voltage range, output short circuit protection, over-current protection, over-voltage protection, and adjustable output voltage.

2. DC/DC Converter Features

Single output to 30A
Industry standard quarter-brick footprint
2.28 x 1.45 x 0.50 inch
Hich efficiency up to 90%
Input to output insulation: 2250 VDC
4:1 ultra wide input voltage range
Low standby power consumption
Adjustable output voltage
Input under-voltage protection
Output over-voltage protection
Output over-current protection
Output short circuit protection
Remote on/off
Remot sense
Over-temperature protection
Railway application
Compliant to RoHS II & REACH
Compliance to EN50155 and EN45545-2
Railway standard

Railway standard

3. Technical Specifications

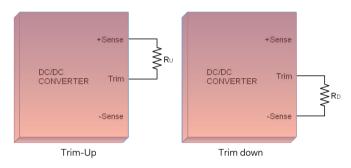
Output Characteristics

Parameters	Model	Min	Min Typical		Units
Output voltage					
(Vin(nom); full load; Ta=25 °C)	⊡S3P3W	3.267	3.3	3.333	VDC
	⊡S05W	4.95	5	5.05	VDC
	□□S12W	11.88	12	12.12	VDC
	⊡S15W	14.85	15	15.15	VDC
	⊡S24W	23.76	24	24.24	VDC
	S 30W	29.70	30	30.30	VDC
	⊡S48W	47.52	48	48.48	VDC
Output regulation					
Line (Vin(min) to Vin(max); full load)	All	-0.1		+0.1	%
Load (0% to 100% of full load)	⊡S3P3W	-0.2		+0.2	%
	⊡S05W	-0.2		+0.2	%
	S12W	-0.1		+0.1	%
	S15W	-0.1		+0.1	%
	⊡S24W	-0.1		+0.1	%
	S 30W	-0.1		+0.1	%
	S48W	-0.1		+0.1	%
Output ripple and noise					
Peak to peak (20MHz bandwidth)	⊡S3P3W		75	100	mVp-p
With a 22µF/25V X7R MLCC	⊡S05W		75	100	mVp-p
	S12W		100	125	mVp-p
	S15W		100	125	mVp-p
With a 4.7µF/50V X7R MLCC	⊡S24W		200	250	mVp-p
	S 30W		200	250	mVp-p
With a 2.2µF/100V X7R MLCC	S48W		300	350	mVp-p
Voltage adjustability					
(Maximum output deviation is inclusive of remote sense)	All	-20		+10	% of Vout
Remote sense					
(If remote sense is not being used, sense pins should connect	All			10	% of Vout
to the output pins with the same polarity.)					
Temperature coefficient	All	-0.02		+0.02	%/°C
Output voltage overshoot					
(Vin(min) to Vin(max); full load; Ta=25°C)	All		0	5	% of Vout
Dynamic load response					
(Vin(nom); Ta=25°C) load step change from 75% to 100% or	⊡S3P3W		350		mV
100 to 75% of full load peak deviation	⊡S05W		450		mV
	□□S12W		700		mV
	□□S15W		700		mV
	⊡S24W		750		mV
	⊡S30W		1100		mV
	⊡S48W		1200		mV
Setting Time (Vo<10% peak deviation)	All		250		μs

Parameters	Model	Min Typical	Max	Units
Output current	24S3P3W		30	А
	24S05W		24	A
	24S12W		10	A
	24S15W		8	А
	24S24W		5	A
	24S30W		4	A
	24S48W		2.5	A
	48S3P3W		30	A
	48S05W		24	А
	48S12W		10	А
	48S15W		8	А
	48S24W		5	А
	48S30W		4	А
	48S48W		2.5	А
	110S3P3W		30	А
	110S05W		24	А
	110S12W	11	А	
	110S15W		8.6	А
	110S24W	5.5	А	
	110S30W		4.4	А
	110S48W		2.7	А
Output capacitance load	24S3P3W		91000	μF
· · · · · · · · · · · · · · · · · · ·	24S05W		48000	μF
	24S12W		8300	μF
	24S15W		5300	μF
	24S24W		2100	μF
	24S30W		1300	μF
	24S48W		520	μF
	48S3P3W		91000	μF
	48S05W		48000	μF
	48S12W		8300	μF
	48S15W		5300	μF
	48S24W		2100	μF
	48S30W		1300	μF
	48S48W		520	μF
	110S3P3W		91000	μF
	110S05W		48000	μF
	110S05W		48000 9170	μr μF
	110S12W 110S15W		9170 5730	μr μF
	110S15W 110S24W		2290	μr μF
	110524W 110S30W		2290 1470	μr μF
	110530W 110S48W		1470 560	μF μF
Dutput over voltage protection	11034010		500	μr
	All	115	130	% of Voi
Hiccup mode)	All	110	100	70 UI VOL
Hiccup mode)				
Hiccup mode) Dutput over current protection % of lout rated; Hiccup mode)	All	110	140	% of FL

Parameters	Model	Min	Typical	Max	Units
Operating input voltage					
Continuous	24S⊟⊐W	8.5	24	36	VDC
	48S⊟⊒W	16.5	48	75	VDC
	110S W	40	110	160	VDC
Transient (1sec,max)	24S⊟⊒W			50	VDC
	48S⊟⊒W			100	VDC
	110S W			185	VDC
nput standby current					
Typ. value at Vin(nom); no load)	24S3P3W		25		mA
	24S05W		25		mA
	24S12W		25		mA
	24S15W		25		mA
	24S24W		25		mA
	24S30W		25		mA
	24S48W		25		mA
	48S3P3W		15		mA
	48S05W		15		mA
	48S12W		15	mA	
	48S15W		15		mA
	48S24W		15		mA
	48S30W		15		mA
	48S48W		15		mA
	110S3P3W		8		mA
	110S05W		8		mA
	110S12W		8		mA
	110S15W		8		mA
	110S24W		8		mA
	110S30W		8		mA
	110S48W		8		mA
Jnder voltage lockout turn-on threshold	24SDW			9	VDC
	48S⊡⊒W			18	VDC
	110S==W			43	VDC
Inder voltage lockout turn-off threshold	24S⊟⊃W	7.3		8.1	VDC
5	48S⊡DW	15.5		16.3	VDC
	110S W	33.0		36.0	VDC
nput reflected ripple current	All		50		mAp-
Start up time					
Vin(nom) and constant resistive load) Power up	All		75	100	ms
Remote on/off	All		75	100	ms
Remote on/off control					
The Ctrl pin voltage is referenced to negative input)					
Negative logic (standard)					
Dn/Off pin low voltage (remote ON)			Short or 0 ~	1.2VDC	
Dn/Off pin high voltage (remote OFF)			Open or 3 ~		
Positive logic (option)			-		
Dn/Off pin high voltage (remote ON)	⊡S⊡W-P		Open or 3 ~	12VDC	
Dn/Off pin low voltage (remote OFF)			Short or 0 ~		
nput current of remote control pin	All	-0.5		1	mA
Remote off state input current	All		3		mA

Parameters	Model	Min	Typical	Max	Units
Efficiency					
(Vin(nom); Full Load; Ta=25°C)	24S3P3W		88		%
	24S05W		89		%
	24S12W	88		%	
	24S15W		89		%
	24S24W		88		%
	24S30W		89		%
	24S48W		88		%
	48S3P3W		88		%
	48S05W		89		%
	48S12W		89	%	
	48S15W		90	%	
	48S24W		90		%
	48S30W		90		%
	48S48W		90		%
	110S3P3W		88		%
	110S05W		89		%
	110S12W		88		%
	110S15W		89		%
	110S24W		89		%
	110S30W		89		%
	110S48W		89		%
solation voltage (1 minute; basic insulation)					
nput to output	All	2250			VDC
nput (output) to base-plate	All	2250			VDC
solation resistance	All	1			GΩ
solation capacitance	All			1500	pF
Switching frequency	All	270	300	330	kHz
Weight	All		64		g
MTBF MIL-HDBK-217F Tc=70°C, full load	All		3.684 x 10 ⁵		hours
Safety meets	All	IEC60950-	1,UL60950-1, EN		
Case material	All	Aluminum	base-plate with p	lastic case	
Potting material	All	Silicone (U			


Environmental Characteristics

Parameters	Model	Min	Typical	Max	Units
Operating base-plate temperature	All	-40		100	°C
Storage temperature	All	-55		125	°C
Over temperature protection	All		110		°C
Thermal impedance (vertical direction; 20LFM)					
Without heat-sink			9		°C/W
		-HS	7.1		°C/W
With 0.24" height heat-sink		-HS2	7.1		°C/W
	SSW -HS1		5.5		°C/W
With 0.5" height heat-sink	ESEW -HS3		5.5		°C/W
Only mount on 2U iron base-plate			2.8		°C/W
*2U iron base-plate dimension is 19" X 3.5" X 0.063"					
Relative humidity	All	5		95	% RH
Thermal shock	All		MIL-STD-810F		
Shock	All		EN61373, MIL-STD-810F		-
Vibration	All		EN61373, N	MIL-STD-810	-

EMI Characteristics				
Parameters	Standard	Condition		Level
EMI (for further information, please contact Powerbox)	EN55011	With externa	l input filter	Class A, Class B
	EN55022			
ESD	EN61000-4-2	Air	±8kV	Perf. Criteria A
		Contact	±6kV	
Radiated immunity	EN61000-4-3	20V/m		Perf. Criteria A
Fast transient	EN61000-4-4	±2kV		Perf. Criteria A
Surge	EN61000-4-5	EN55024	±2kV	Perf. Criteria A
		EN50155	±2kV	
Conducted immunity	EN61000-4-6	10V r.m.s		Perf. Criteria A
Power frequency magnetic field	EN61000-4-8	100A/m con	tinuous;	Perf. Criteria A
		1000A/m 1 s	second	

4. Output Voltage Adjustment

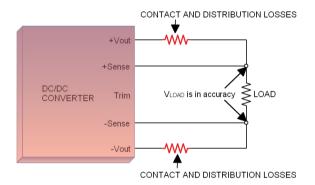
Output voltage is adjustable for 10% trim up or -20% trim down of nominal output voltage by connecting an external resistor between the Trim pin and either the +Sense or -Sense pins. With an external resistor between the Trim and -Sense pin, the output voltage set point decreases. With an external resistor between the Trim and +Sense pin, the output voltage set point increases. Maximum output deviation is +10% inclusive of remote sense. The value of external resistor can be obtained by equation or trim table shown in next page. The external TRIM resistor needs to be at least 1/8W of rated power.

Output voltage adjustment configurations

Trim Equation

$$\begin{aligned} \mathsf{R}_{\mathsf{U}} = & \left(\frac{5.11\mathsf{V}_{\mathsf{OUT}}(100 + \Delta\%)}{1.225\Delta\%} - \frac{511 + 10.22\Delta\%}{\Delta\%}\right) \mathsf{k}\Omega \\ \mathsf{R}_{\mathsf{D}} = & \left(\frac{511}{\Delta\%} - 10.22\right) \mathsf{k}\Omega \end{aligned}$$

Trim Table


⊡S3P3W	Trim-Up										
Trim-Up	(%)	1	2	3	4	5	6	7	8	9	10
Vout	(V)	3.333	3.366	3.399	3.432	3.465	3.498	3.531	3.564	3.597	3.630
RU	(kΩ)	869.117	436.331	292.07	219.939	176.66	147.808	127.198	111.742	99.72	90.103
⊡S05W	Trim-Up										
Trim-Up	(%)	1	2	3	4	5	6	7	8	9	10
Vout	(V)	5.05	5.10	5.15	5.20	5.25	5.30	5.35	5.40	5.45	5.50
RU	(kΩ)	1585.35	797.994	535.542	404.316	325.58	273.09	235.596	207.476	185.605	168.109
⊡⊡S12W	Trim-Up										
Trim-Up	(%)	1	2	3	4	5	6	7	8	9	10
Vout	(V)	112.12	12.24	12.36	12.48	12.60	12.72	12.84	12.96	13.08	13.20
RU	(kΩ)	4534.55	2287.19	1538.08	1163.52	938.78	788.956	681.939	601.676	539.25	489.309
DDS15W	Trim-Up										
Trim-Up	(%)	1	2	3	4	5	6	7	8	9	10
Vout	(V)	15.15	15.30	15.45	15.60	15.75	15.90	16.05	16.20	16.35	16.50
RU	(kΩ)	5798.49	2925.42	1967.73	1488.89	1201.58	1010.04	873.229	770.619	690.812	626.966
□□S24W	Trim-Up										
Trim-Up	(%)	1	2	3	4	5	6	7	8	9	10
Vout	(V)	24.24	24.48	24.72	24.96	25.20	25.44	25.68	25.92	26.16	26.40
RU	(kΩ)	9590.32	4840.11	3256.7	2465	1989.98	1673.3	1447.1	1277.45	1145.5	1039.94
DDS30W	Trim-Up										
Trim-Up	(%)	1	2	3	4	5	6	7	8	9	10
Vout	(V)	30.3	30.6	30.9	31.2	31.5	31.8	32.1	32.4	32.7	33
RU	(kΩ)	12118.2	6116.57	4116.02	3115.74	2515.58	2115.47	1829.68	1615.33	1448.62	1315.25
DDS48W	Trim-Up										
Trim-Up	(%)	1	2	3	4	5	6	7	8	9	10
Vout	(V)	48.48	48.96	49.44	49.92	50.40	50.88	51.36	51.84	52.32	52.80
RU	(kΩ)	19701.9	9945.94	6693.96	5067.97	4092.38	3441.99	2977.42	2628.99	2357.99	2141.19
	Trim-Dow	'n									
Trim-Down	(%)	1	2	3	4	5	6	7	8	9	10
RD	(kΩ)	500.78	245.28	160.113	117.53	91.98	74.947	62.78	53.655	46.558	40.88
Trim-Down	(%)	11	12	13	14	15	16	17	18	19	20
RD	(kΩ)	36.235	32.363	29.088	26.28	23.847	21.718	19.839	18.169	16.675	15.33
RD	(kΩ)	36.235	32.363	29.088	26.28	23.847	21.718	19.839	18.169	16.675	15.3

5. Remote Sense

To minimum the effects of distribution losses by regulating the voltage at the Remote Sense pin. The voltage between the Sense pin and OUTPUT pin must not exceed 10% of Vout, i.e.

[+Vout to –Vout] – [+Sense to –Sense] \leq 10% Vout

The voltage between +Vout and –Vout terminals must not exceed the minimum output overvoltage protection threshold. This limit includes any increase in voltage due to remote sense compensation and trim function. If not using the remote sense feature to regulate the output at the point of load, then connect +Sense to + Vout and –Sense to –Vout.

Manual

6. Input Source Impedance

The power modules will operate as specifications without external components, assuming that the source voltage has a very low impedance and reasonable input voltage regulation. Highly inductive source impedances can affect the stability of the power module. Since real-world voltage source has finite impedance, performance can be improved by adding external filter capacitor The PQAE150-24SIIW and PQAE150-48SIIW recommended Nippon Chemi-con KY series, 100µF/100V. The PQAE150-110SIIW recommended Ruby-con BXF series, 39µF/200V.

Install CSIM and LSIM to simulate the impedance of power source. External input capacitors CFILTER serve primarily as energy-storage elements, minimizing line voltage variations caused by transient IR drops in conductors from backplane to the DC/DC. The capacitor must as close as possible to the input terminals of the power module for lower impedance. For the input reflected-ripple current measurement configuration is shown as below:

Input reflected-ripple current measurement setup

PQAE150-24SDDW

Component	Value	Voltage	Reference
LSIM	11µH		Inductor
CSIM`CFILTER	220µF	50V	Nippon chemi-con KY-series

PQAE150-48SDDW

Component	Value	Voltage	Reference
LSIM	11µH		Inductor
CSIM`CFILTER	100µF	100V	Nippon chemi-con KY-series

PQAE150-110SDDW

Component	Value	Voltage	Reference
LSIM	20µH		Inductor
CSIM`CFILTER	120µF	200V	Ruby-con BXF series

7. Output Over Current Protection

When excessive output currents occur in the system, circuit protection is required on all power supplies. Normally, overload current is maintained at approximately 110~140 percent of rated current for PQAE150W Series. Hiccup-mode is a method of operation in a power supply whose purpose is to protect the power supply from being damaged during an over-current fault condition. It also enables the power supply to restart when the fault is removed. There are other ways of protecting the power supply when it is over-loaded, such as the maximum current limiting or current fold-back methods.

One of the problems resulting from over current is that excessive heat may be generated in power devices; especially MOSFET and Schottky diodes and the temperature of those devices may exceed their specified limits. A protection mechanism has to be used to prevent those power devices from being damaged.

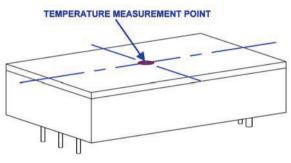
The operation of hiccup is as follows. When the current sense circuit sees an over-current event, the controller shuts off the power supply for a given time and then tries to start up the power supply again. If the over-load condition has been removed, the power supply will start up and operate normally; otherwise, the controller will see another over-current event and shut off the power supply again, repeating the previous cycle. Hiccup operation has none of the drawbacks of the other two protection methods, although its circuit is more complicated because it requires a timing circuit. The excess heat due to overload lasts for only a short duration in the hiccup cycle, hence the junction temperature of the power devices is much lower.

The hiccup operation can be done in various ways. For example, one can start hiccup operation any time an over-current event is detected; or prohibit hiccup during a designated start-up is usually larger than during normal operation and it is easier for an over-current event is detected; or prohibit hiccup during a designated start-up interval (usually a few milliseconds). The reason for the latter operation is that during start-up, the power supply needs to provide extra current to charge up the output capacitor. Thus the current demand during start-up is usually larger than during normal operation and it is easier for an over-current event to occur. If the power supply starts to hiccup once there is an over-current, it might never start up successfully. Hiccup mode protection will give the best protection for a power supply against over current situations, since it will limit the average current to the load at a low level, so reducing power dissipation and case temperature in the power devices.

8. Output Short Circuitry Protection

Continuous, hiccup and auto-recovery mode. During short circuit, converter still shut down. The average current during this condition will be very low and the device can be safety in this condition.

9. Output Over Voltage Protection

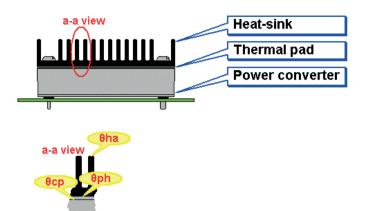

The output over-voltage protection consists of circuitry that monitors the voltage on the output terminals. If the voltage on the output terminals exceeds the over-voltage protection threshold, then the module enter the non-latch hiccup mode.

10. Over Temperature Protection

Sufficient cooling is needed for the power module and provides more reliable operation of the unit. If a fault condition occurs, the temperature of the unit will be higher. And will damage the unit. For protecting the power module, the unit includes over-temperature protection circuit. When the temperature of the Aluminum base-plate is to the protection threshold, the unit enters "Hiccup" mode. And it will auto restart when the temperature is down.

11. Thermal Considerations

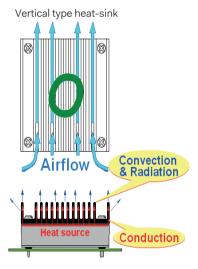
The power module operates in a variety of thermal environments. However, sufficient cooling should be provided to help ensure reliable operation of the unit. Heat is removed by conduction, convection, and radiation to the surrounding Environment. Proper cooling can be verified by measuring the point as the figure below. The temperature at this location should not exceed 100°C. When Operating, adequate cooling must be provided to maintain the test point temperature at or below 100°C. Although the maximum point Temperature of the power modules is 100°C, you can limit this Temperature to a lower value for extremely high reliability.


TOP VIEW

The suggested heat dissipation modes as below: 1. Add the heat-sink

The main function of heat-sink is to add the touch surface of heat source for air. Under the suitable air convection condition (including natural convection), that can reduce the heat resistance θ ca apparently. After combination of the heat resistance θ ca, it's the sub-total of θ cp, θ ph and θ ha. Because the air gets big heat resistance under no air convection, the θ ha which touch the air is the main heat resistance. Suggestions as below:

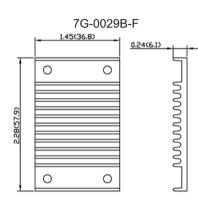
(1) $\theta ca=\theta cp+\theta ph+\theta ha$. In order to let the heat-sink reducing the θha in big range, we suggest to use the thermal pad with good heat conduction and flushing performance.


(2) The best layout for heat-sink is to put the fin of the heat-sink vertical to the air, and this will cause a good "stack effect". So, we can have the best natural air convection condition. When there's no force air to help the heat dissipation, this point is critical.

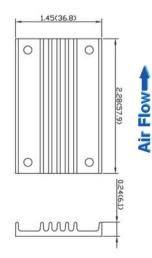
2. Force Air

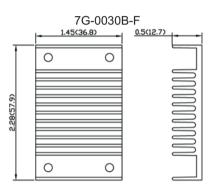
Normally, we use the fan for the force air. By the air movement rapidly, it can bring the heat energy from the case surface. This is a good solution to reduce the heat resistance θ ca of the module. When the air speed is bigger, the heat resistance is smaller, and the heat dissipation performance is better. We need to note, the air direction not to be in vertical with the module's frame. Or, the heat dissipation performance will be worse.

If there's heat-sink and force air in the same system, the direction for heat-sink and force air should be followed as illustrate in below left chart. So we can get the best performance of heat dissipation. In below right chart, it's wrong direction. The air can't go through, the performance is not good.

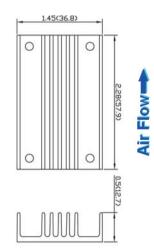

Horizontal type heat-sink

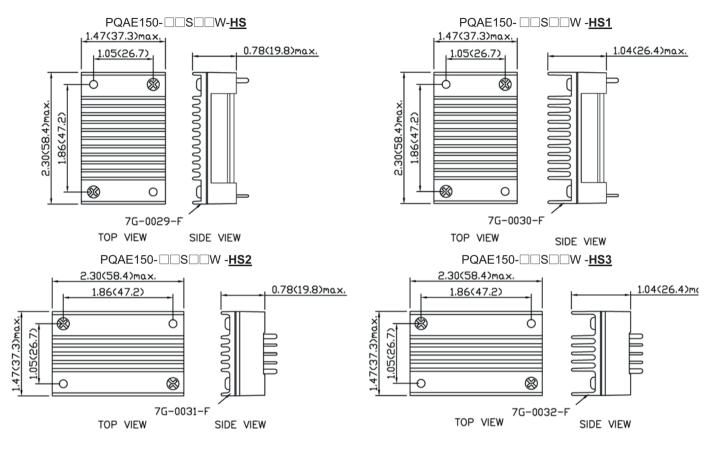
12. Heat-Sink Considerations


Equip heat-sink for lower temperature and higher reliability of the module. Considering space and air-flow and choose which heat-sink is needed. There are four types of heat-sink as the below for optional order.


Part No.	Suffix
Without heat-sink	
7G-0029B-F	HS
7G-0030B-F	HS1
7G-0031B-F	HS2
7G-0032B-F	HS3

Air Flow

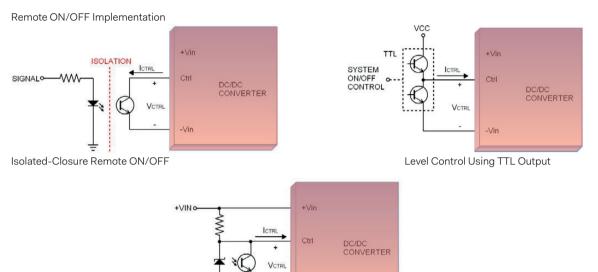

7G-0031B-F


Air Flow

7G-0032B-F

1. All dimensions in inch (mm) 2. Tolerance : x.xx±0.02 (x.x±0.5)

The heat-sink type mechanical drawing

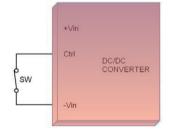


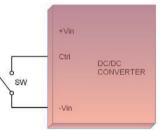
1. All dimensions in inch (mm)

2. Tolerance : x.xx±0.02 (x.x±0.5)

13. Remote On/Off Control

The Ctrl Pin is controlled DC/DC power module to turn on and off, the user must use a switch to control the logic voltage high or low level of the pin referenced to -Vin. The switch can be open collector transistor, FET and Photo-Coupler. The switch must be capable of sinking up to 1 mA at low-level logic voltage. High-level logic of the Ctrl pin signal maximum voltage is allowable leakage current of the switch at 12V is 0.5 mA.

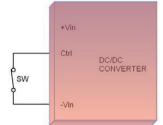


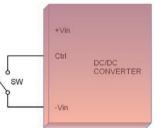

-Vin

There are two remote control options available, positive logic and negative logic.

-VIN O

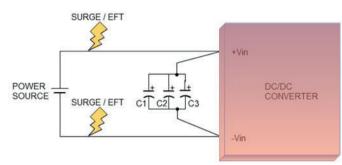
a. The positive logic structure turned on of the DC/DC module when the Ctrl pin is at high-level logic and low-level logic is turned off it.




When PQAE150W module is turned off at Low-level logic

When PQAE150W module is turned on at High-level logic

b. The negative logic structure turned on of the DC/DC module when the Ctrl pin is at low-level logic and turned off when at high-level logic.


When PQAE150W module is turned on at Low-level logic

When PQAE150W module is turned off at High-level logic

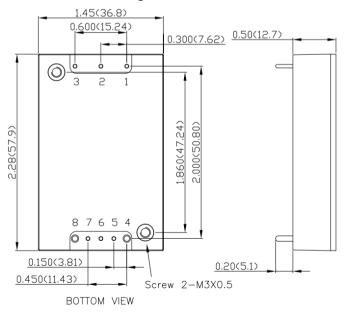
14. EMS Considerations

The PQAE150W series can meet Fast Transient EN61000-4-4 and Surge EN61000-4-5 performance criteria A with external components connected to the input terminals of the module. Please see the following schematics as below.

Surge/Fast transient

PQAE150-24SDW					
Component	Value	Reference			
C1`C2	220µF	100V	Nippon chemi-con KY-series		

PQAE150-48SDDW


Component Value Voltage Reference					
C1`C2	220µF	100V	Nippon chemi-con KY-series		

PQAE150-110SDDW

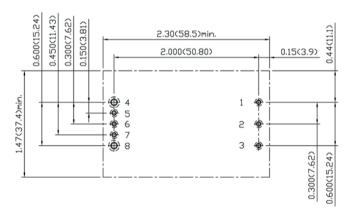
Component Value Voltage Reference

C1`C2`C3	100µF	250V	Ruby-con BXF series
OT OF OO	700bi	2001	

15. Mechanical Drawing

Pin	Define	Diameter
1	- Vin	0.04 Inch
2	Ctrl	0.04 Inch
3	+Vin	0.04 Inch
4	-Vout	0.06 Inch
5	-Sense	0.04 Inch
6	Trim	0.04 Inch
7	+Sense	0.04 Inch
8	+Vout	0.06 Inch

1. All dimensions in Inch (mm)


2. Tolerance: X.XX±0.02 (X.X±0.5) X.XXX±0.01 (X.XX±0.25)

3. Pin pitch tolerance ±0.01 (0.25)

4. Pin dimension tolerance ±0.004 (0.1)

5. The screw locked torque: MAX 3.5kgf-cm(0.34N-m)

16. Recommended Pad Layout

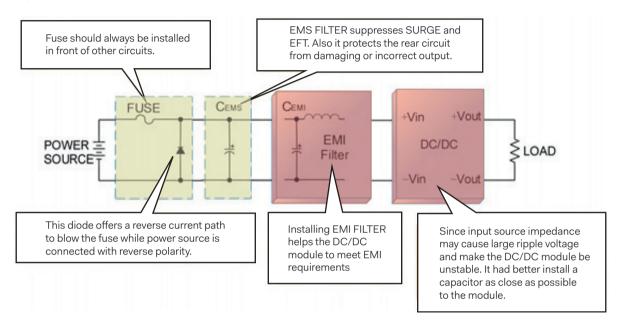
All dimensions in inch(mm) Pad size(lead free recommended) Through hole 1.2.3.5.6.7:00.051(01.30) Through hole 4.8:00.075(01.90) Top view pad 1.2.3.5.6.7:00.064(01.63) Top view pad 5.9:00.094(02.38) Bottom view pad 1.2.3.5.6.7:00.102(02.60) Bottom view pad 5.9:00.150(03.80)

1. All dimensions in Inch (mm)

2. Tolerance: X.XX±0.02 (X.X±0.5) X.XXX±0.01 (X.XX±0.25)

3. Pin pitch tolerance $\pm 0.01 (0.25)$

4. Pin dimension tolerance $\pm 0.004(0.1)$


17. Line Protection & EMC Considerations

Typical Application

• Below shows some blocks connected between power source and DC/DC module. Install the circuit of the block which is required.

• Each block has individual function and should be placed on the corresponding location.

• If CEMI is an Aluminum electrolytic capacitor and connected in parallel with CEMS, The capacitance we recommended for meeting EMS requirements could be CEMS pluses CEMI.

Fig 17-1 Typical application

• Input source impedance: The power modules will operate as specifications without external components, assuming that the source voltage has a very low impedance and reasonable input voltage regulation. Highly inductive source impedances can affect the stability of the power module. Since real-world voltage source has finite impedance, performance can be improved by adding external filter capacitor. The PQAE150-24SXXW and PQAE150-48SXXW recommended Nippon Chemi-con KY series, 100µF/100V. The PQAE150-110SXXW recommended Ruby-con BXF series, 39µF/200V.

18. Line Protections

Fuse

• The DC/DC converter is not internally fused. An input line fuse must always be used.

• Fuses should be installed in front of each module when multiple DC/DC converters connect to the same power source.

Model	Fuse Rating (A)	Fuse Type
PQAE150-24S	25	Fast-Acting
PQAE150-48S	12	Fast-Acting
PQAE150-110S	6.3	Slow-Blow

Table 18-1 Fuse selection

• According to actual current value, calculating fuse ratings base on the following equations:

 $I_{FUSE} \ge I_{in}$ /(rerating x safety margin)

Melting I²t =I²_{PULSE,act} \cdot t / 0.22

Where

I_{FUSE} is current rating of fuse.

 ${\sf I}_{{\sf in}}$ is actual value of input current.

Rerating is percentage of fuse rating base on ambient temperature. Fuse rating is variety under different ambient temperature. Safety margin is percentage of fuse rating set by user.

Melting I²t is pulse energy rating of fuse.

I_{PULSE,act} is actual input pulse current.

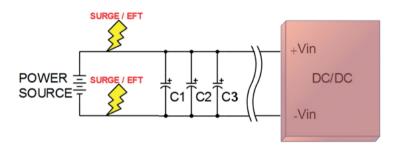
t is the width of the input pulse current.

Reverse Input Voltage Protection

- Avoid the reverse polarity input voltage; otherwise, it will damage the DC/DC converter.
- It is likely to protect the module from the reverse input voltage by installing an external diode.
- The diode can block reverse voltage or blow the line fuse to protect DC/DC converter.
- Recommend using Schottky diode for reverse input voltage protection

Fig 18-1 Reverse input voltage protection

Model	Voltage Rating of the Diode	Current Rating of the Diode
PQAE150-24SDDW	60V	1~1.5 x Fuse Rating
PQAE150-48S	100V	1~1.5 x Fuse Rating
PQAE150-110S	200V	1~1.5 x Fuse Rating


Fig 18-2 Reverse protection diode selection

19. EMS Considerations

- The module can meet EMS requirements as below.
- An external input filter capacitor is required if the module has to meet EN61000-4-4, EN61000-4-5

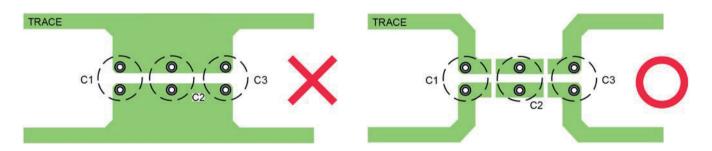

Parameter	Conditions		Level
ESD	EN61000-4-2	Air ±8kV and Contact ±6kV	Perf. Criteria A
Radiated immunity	EN61000-4-3	20V/m	Perf. Criteria A
Fast transient	EN61000-4-4	±2kV	Perf. Criteria A
Surge	EN61000-4-5	EN55024 ±2kV and EN50155 ±2kV	Perf. Criteria A
Conducted immunity	EN61000-4-6	10Vr.m.s	Perf. Criteria A

Table 19-1 EMS requirements

Fig 19-1 Surge & EFT protections

• It should be noticed that the current path of the PCB trace. Wrong PCB layout reduces ability of suppressing SURGE or EFT.

Fig 19-2 PCB trace

Model	Component	Specification	Reference
PQAE150-24SDDW	C1, C2	220µF/100V	Nippon Chemi-con KY series
PQAE150-48S			
PQAE150-110S	C1, C2, C3	100µF/250V	Ruby-con BXF series
Table 10, 2 Surge & EE	Tfiltor		

Table 19-2 Surge & EFT filter

20. EMI Considerations Recommended External EMI Filter for EN55032 Class A

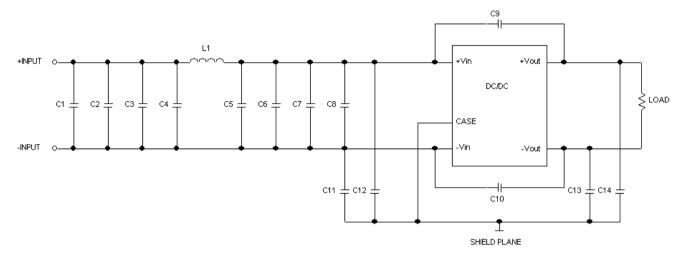


Fig 20-1 Recommended EMI filter for EN55032 Class A

MODEL	C1	C2`C3`C4	C5	C6`C7`C8	C9`C10`C11`C12`C13`C14	L1
PQAE150-24S	N/A	6.8µF/50V	N/A	6.8µF/50V	1000pF/3kV	0.68µH; 17A
		1812 MLCC		1812 MLCC	1808 MLCC	SMD Inductor
						PMT-114
PQAE150-48S	4.7µF/100V	4.7µF/100V	4.7µF/100V	4.7µF/100V	1000pF/3kV	3.3µH; 10A
	1812 MLCC	1812 MLCC	1812 MLCC	1812 MLCC	1808 MLCC	SMD Inductor
						PMT-102

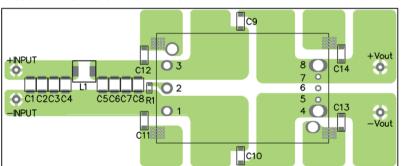
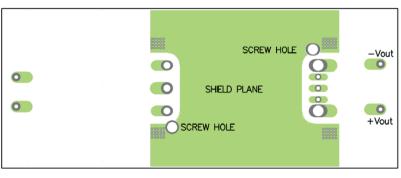
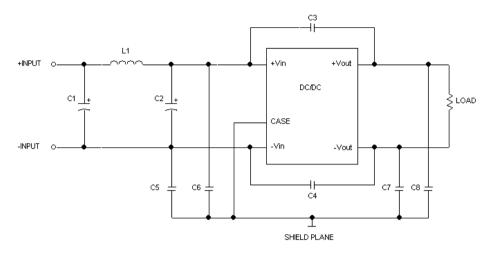
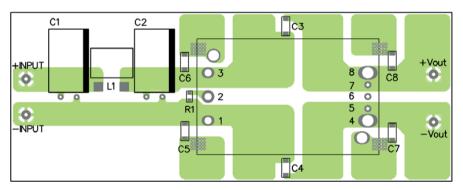



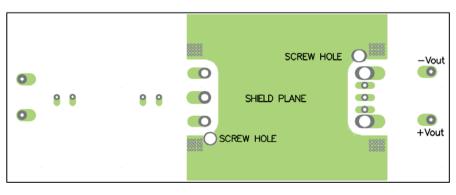
Table 20-1 B.O.M. of external EMI filter

Top view

Bottom view Fig 20-2 Recommended layout pattern

Recommended External EMI Filter for EN55032 Class A


Fig 20-3 Recommended EMI filter for EN55032 Class A

Model	C1`C2	C3`C4`C5`C6`C7`C8	L1	
PQAE150-110S	39µF/250V	1000pF/3kV	30µH; 5A	
	Al Cap.	1808 MLCC	SMD Inductor	
	(lie down)		PMT-104	
	Rubycon BXF			

Table 20-2 B.O.M. of external EMI filter

Top view

Bottom view Fig 20-4 Recommended layout pattern

Recommended External EMI Filter for EN55032 Class B

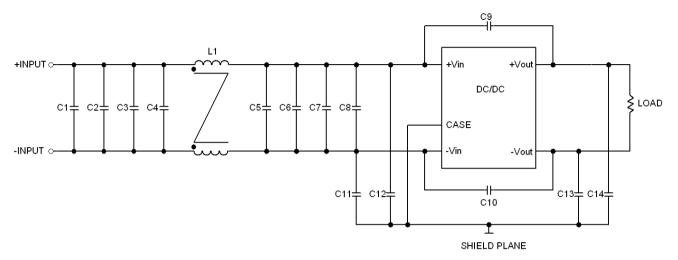
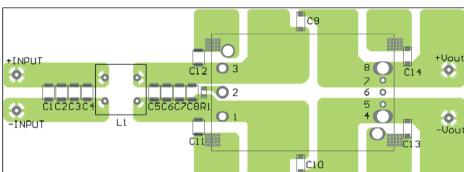
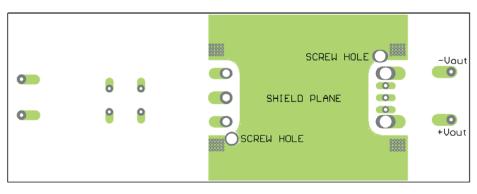
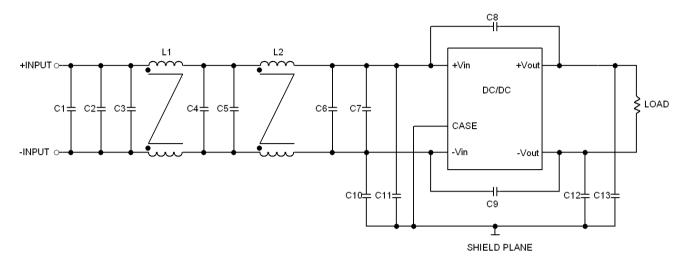


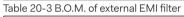
Fig 20-5 Recommended EMI filter for EN55032 Class B

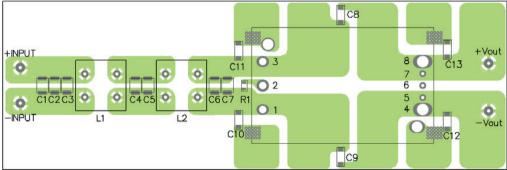
Model	C1`C2`C3`C4	C5`C6`C7`C8	C9`C10`C13`C14	C11`C12	L1
PQAE150-24SEEW	10µF/50V	10µF/50V	1000pF/3kV	2200pF/3kV	285µH
	1812 MLCC	1812 MLCC	1808 MLCC	1812 MLCC	Common Choke
					PMT-103

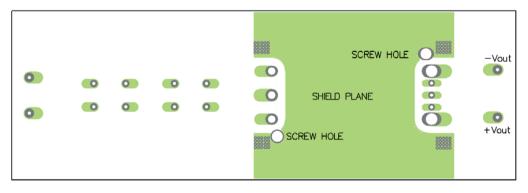




Table 20-3 B.O.M. of external EMI filter

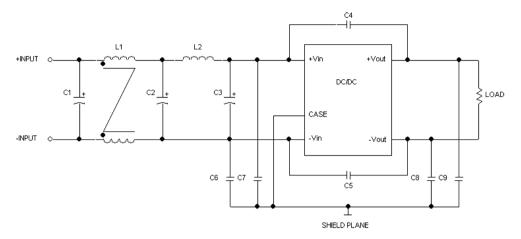
Top view


Bottom view Fig 20-6 Recommended layout pattern


Recommended External EMI Filter for EN55032 Class B


Fig 20-5 Recommended EMI filter for EN55032 Class B

Model	C1`C2`C3`C4`C5`C6`C7	C8`C9`C10`C11`C12`C13	L1	L2
PQAE150-48S	4.7µF/100V	1000pF/3kV	620µH	285µH
	1812 MLCC	1808 MLCC	Common Choke	Common Choke
			PMT-067	PMT-103


Top view

Bottom view

Fig 20-6 Recommended layout pattern

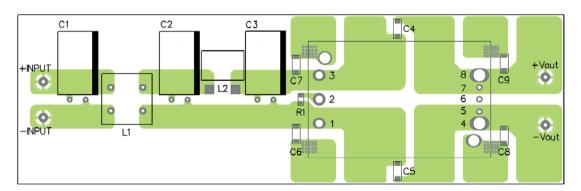

Recommended External EMI Filter for EN55032 Class B

Fig 20-7 Recommended EMI filter for EN55032 Class B

C1`C2`C3	C4`C5`C6`C7`C8`C9	L1	L2
39µF/250V	1000pF/3kV	735µH	30.1µH; 5A
Al Cap.	1808 MLCC	Common Choke	SMD Inductor
(lie down)		PMT-105	PMT-104
Rubycon BXF			
	39μF/250V Al Cap. (lie down)	39μF/250V 1000pF/3kV Al Cap. 1808 MLCC (lie down) 1808 MLCC	39μF/250V 1000pF/3kV 735μH Al Cap. 1808 MLCC Common Choke (lie down) PMT-105

Table 20-4 B.O.M. of external EMI filter Top view

Bottom view

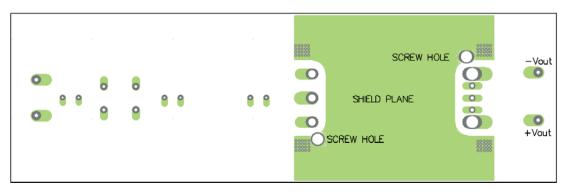


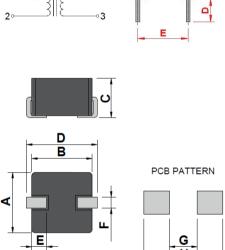
Fig 20-8 Recommended layout pattern

Specifications of Common Mode Choke and Differential Inductor

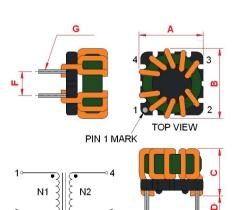
Part number:	PMT-067		
Inductance:	620µH ±35% (100kHz/ 100mV)		
DCR:	25 mΩ		
Rated current:	7.5A, max.		
Dimensions (mm):	A 16.0, max.		
	B 16.0, max.		
	C 15.0, max.		
	D 4.0 ±0.3		
	E 10.0 ±0.3		
	F 7.4 ±0.3		
	G		

PIN 1 MARK

G


 * Recommended through hole: $\phi 1.0~\text{mm}$

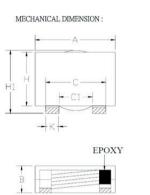
Part number:	PM	T-102		
Inductance:	3.3µ	3.3µH ±20% (100kHz/250mV)		
DCR:	18 r	18 mΩ		
Rated current:	10A	, max.		
Dimensions (mm):	А	6.5 ±0.3		
	В	6.5 ±0.3		
	С	4.2, max.		
	D	7.6, max.		
	Е	1.5 ±0.3		
	F	1.2 ±0.3		
	G	3.0		
	Н	8.5		
	I	2.5		


Part number:	PM	T-103		
Inductance:	285	285µH ±35% (100kHz/ 100mV)		
DCR:	5.5	5.5 mΩ		
Rated Current:	16A	A, max		
Dimensions (mm):	А	16.0, max.		
	В	16.0, max.		
	С	15.0, max.		
	D	3.6 ±0.3		
	Е	10.0 ±0.3		
	F	7.4 ±0.3		
	G	φ0.8 ±0.1		

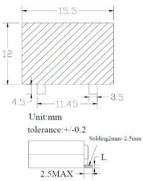
* Recommended through hole: ϕ 1.0 mm

All dimensions in mm

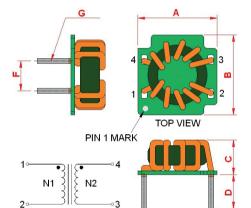
Н

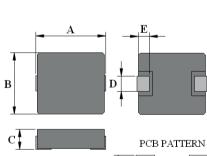


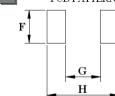
-∘3


E

2∘

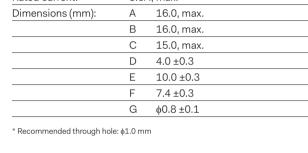

Part number:	PM ⁻	Г-104	
Inductance:	30.1µH ±10% (100kHz/ 100mV)		
DCR:	40 mΩ		
Rated current:	5A,	max.	
Dimensions (mm):	А	13.5, max.	
	В	5.8, max.	
	С	10.9, max.	
	C1	5.2, min.	
	Н	10.0, max.	
	H1	14.3, max.	
	K	2.3 ±0.2	
	L	0.2 ±0.2	

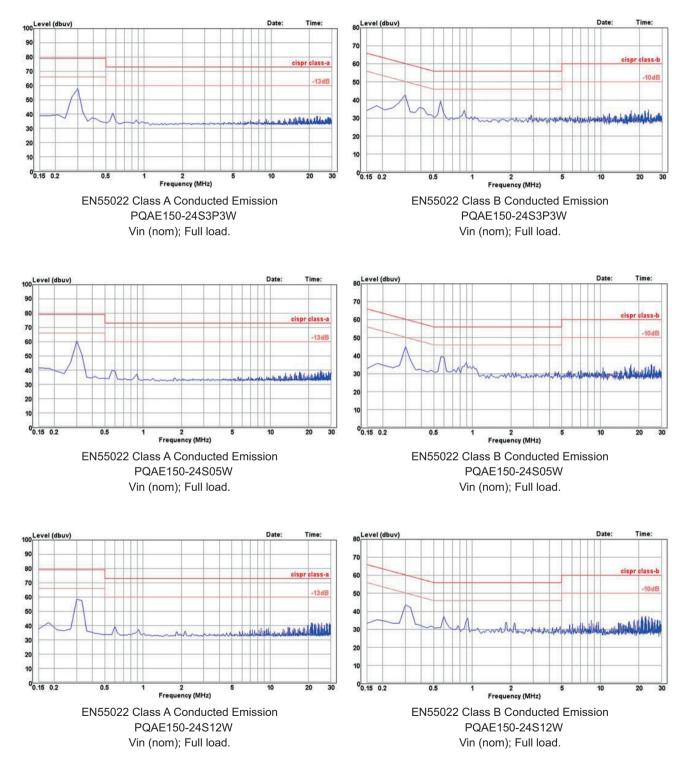

PCB PATTERN :

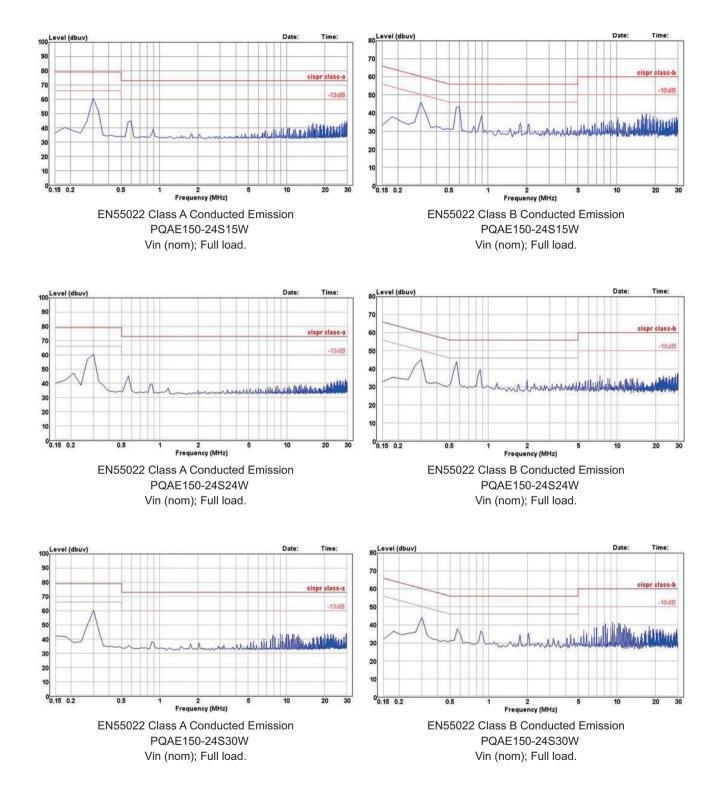


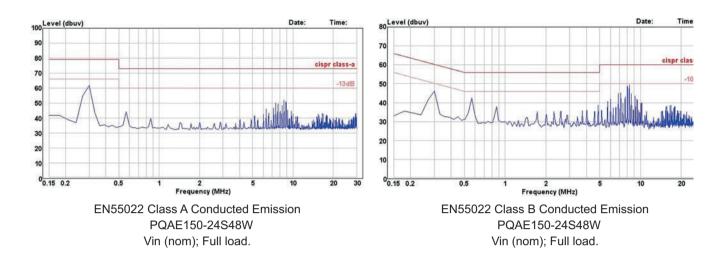
Part number:	PM	Г-105	
Inductance:	735µH ±35% (100kHz/ 100mV)		
DCR:	19 mΩ		
Rated current:	5.6A, max.		
Dimensions (mm):	А	16.0, max.	
	В	16.0, max.	
	С	15.0, max.	
	D	4.0 ±0.3	
	Е	10.0 ±0.3	
	F	7.4 ±0.3	
	G	φ0.8 ±0.1	

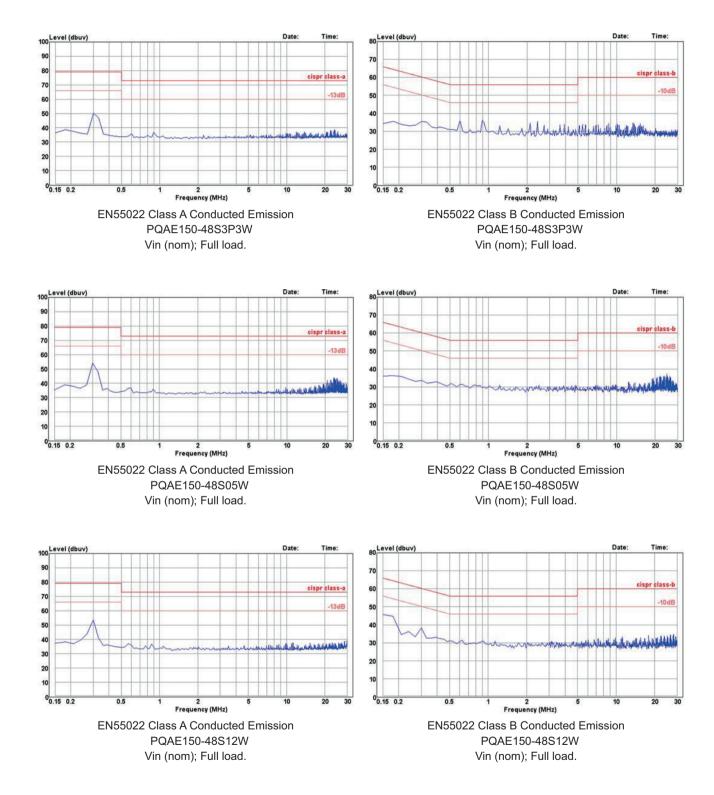
Part number:	PMT	-114	
Inductance:	0.68µH ±20% (100kHz/250mV)		
DCR:	3.8 mΩ		
Rated Current:	17 A, max		
Dimensions (mm):	А	7.8, max.	
	В	7.0, max.	
	С	4.2, max.	
	D	2.0 ±0.5	
	Е	1.2 ±0.3	
	F	3.5	
	G	3.7	
	Н	8.0	

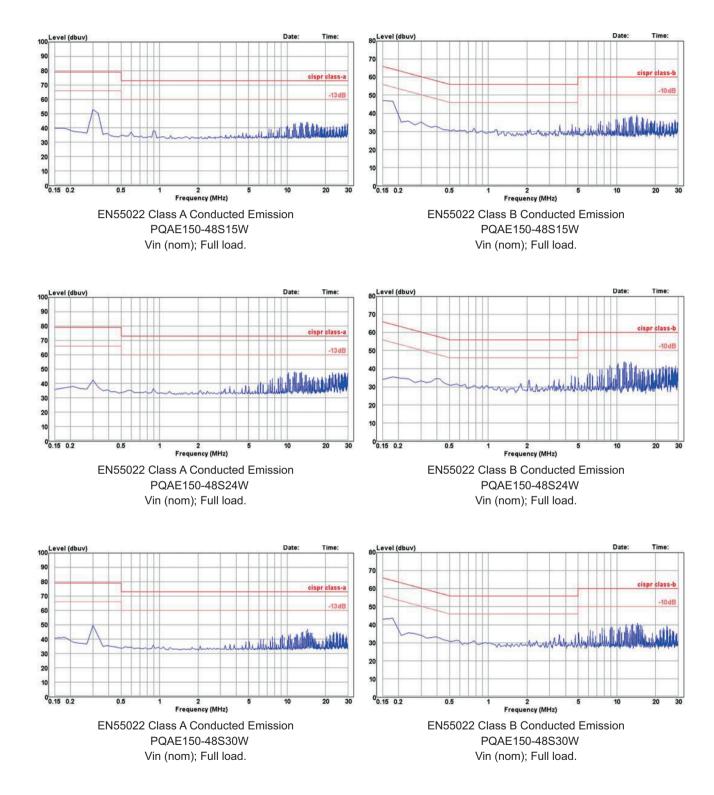


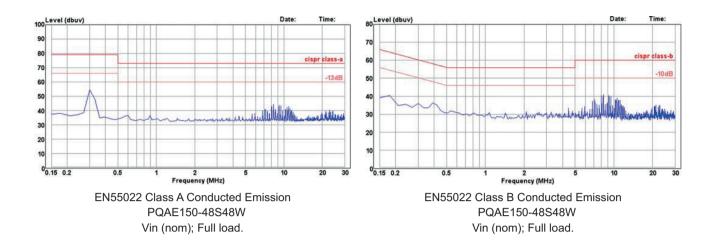

Е

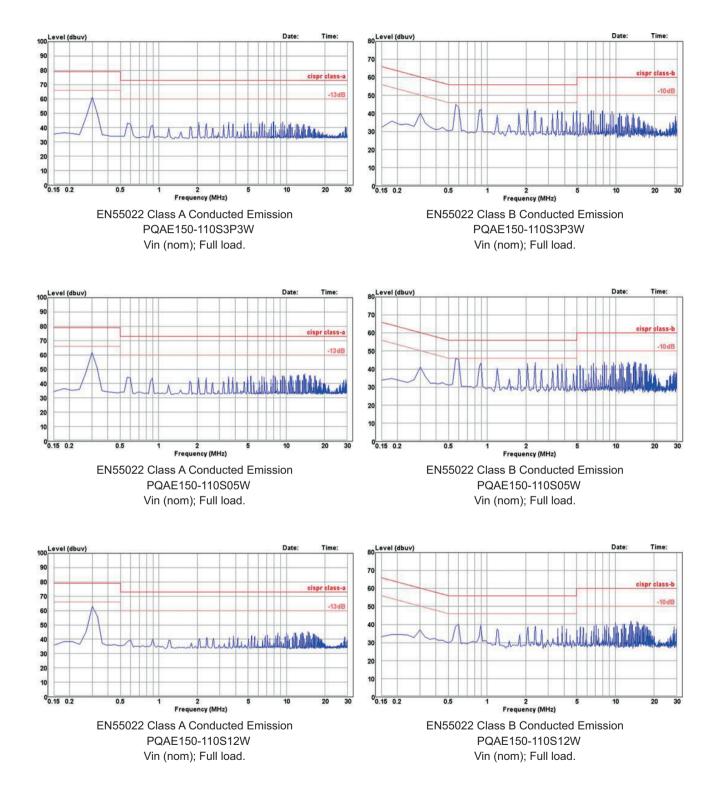

* Recommended through hole: \oppi1.6 mm

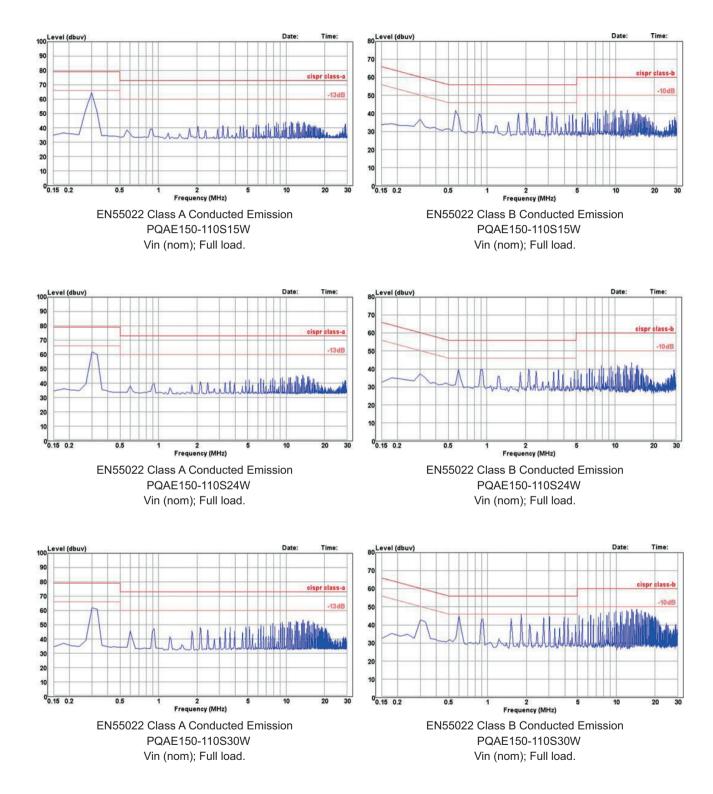

All dimensions in mm

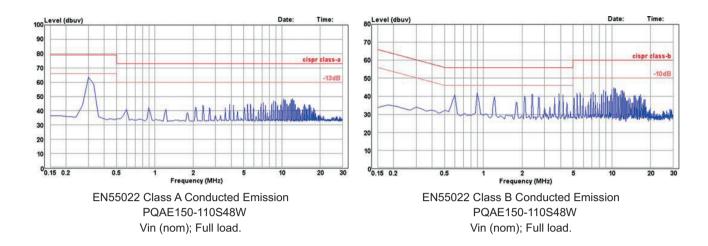


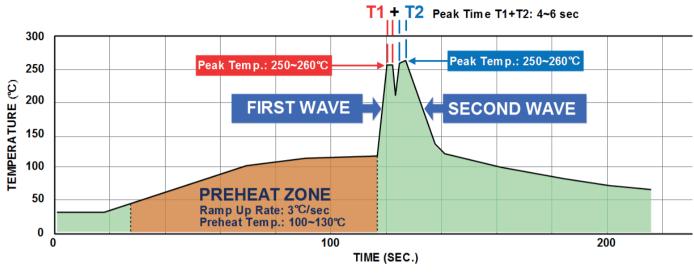

21. EMI Test Results

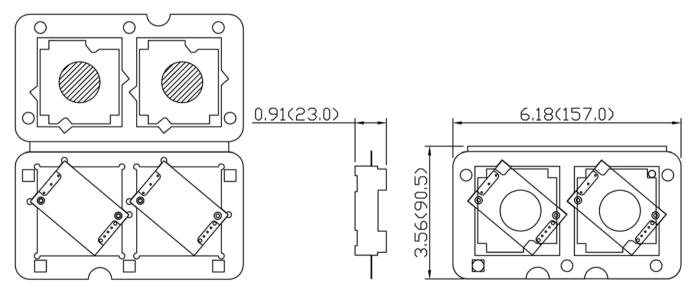











22. Soldering Considerations

Lead free wave solder profile

Reference Solder :Sn-Ag-Cu; Sn-Cu Hand Welding (Reference): Soldering iron:Power 150W Welding Time:20~30 sec Temp:410~430°C

23. Packaging Information

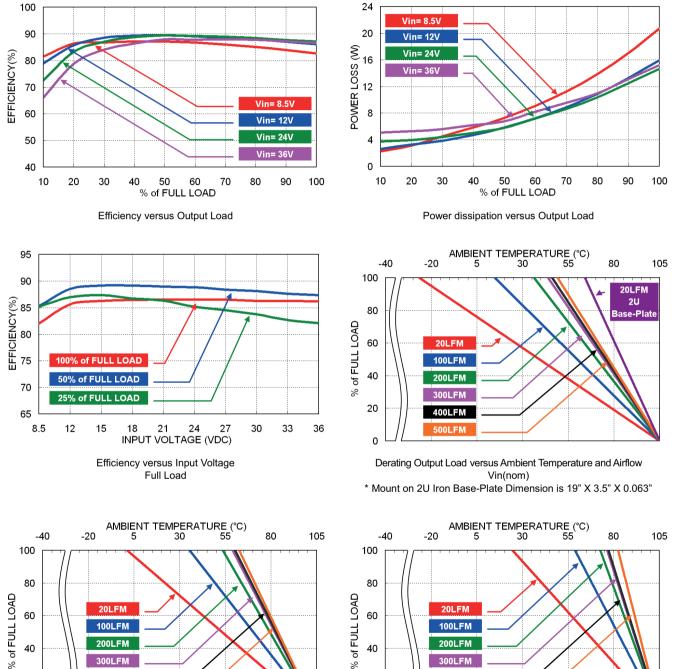
All dimensions in inch (mm)

24. Safety and Installation Instruction

Fusing Consideration:

Caution: This power module is not internally fused. An input line fuse must always be used. This encapsulated power module can be used in a wide variety of applications, ranging from simple stand-alone operation to an integrated part of sophisticated power architecture. To maximum flexibility, internal fusing is not included; however, to achieve maximum safety and system protection, always use an input line fuse. The input line fuse suggest as below:

Model	Fuse Rating (A)	Fuse Type
PQAE150-24SDDW	25	Fast-Acting
PQAE150-48S	12	Fast-Acting
PQAE150-110S	6.3	Slow-Blow


Based on the information provided in this data sheet on inrush energy and maximum dc input current at low Vin. If customer have another used condition and need more information. Please contact Powerbox.

25. MTBF and Reliability

The MTBF of PQAE150W series of DC/DC converters has been calculated using MIL-HDBK 217F NOTICE2 FULL LOAD, Tc=70°C. The resulting figure for MTBF is 3.684×105 hours.

26. Characteristic Curves

All test conditions are at 25°C.The figures are identical for PQAE150-24S3P3W

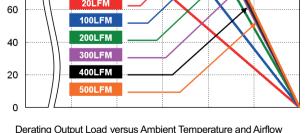
100LFM

200LFM

300LFM

400LFM

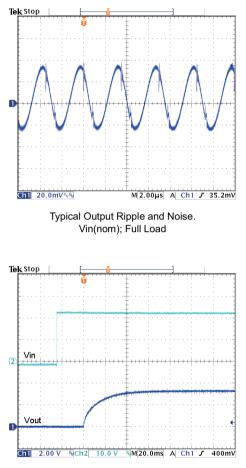
500LFN

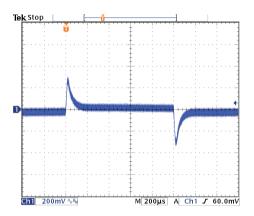

Derating Output Load versus Ambient Temperature and Airflow

With 0.5" Heat-Sink , Vin(nom)

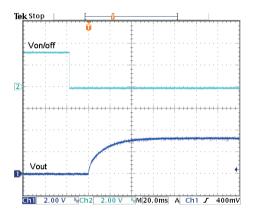
40

20

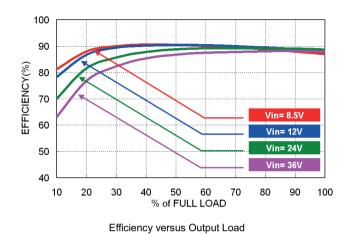

0

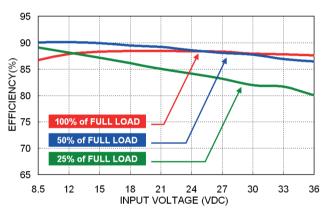

Derating Output Load versus Ambient Temperature and Airflow With 0.24" Heat-Sink , Vin(nom)

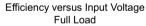
www.prbx.com

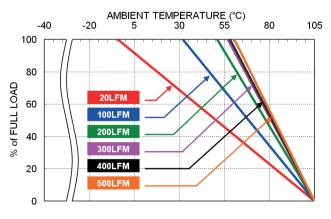

All test conditions are at 25°C.The figures are identical for PQAE150-24S3P3W

Typical Input Start-Up and Output Rise Characteristic Vin(nom); Full Load

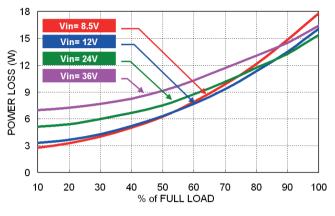


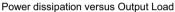

Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin(nom)

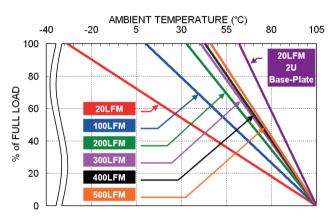



Using ON/OFF Voltage Start-Up and Output Rise Characteristic Vin(nom); Full Load

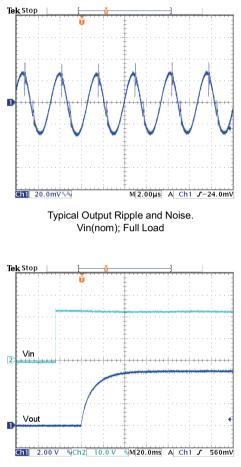
All test conditions are at 25°C.The figures are identical for PQAE150-24S05W



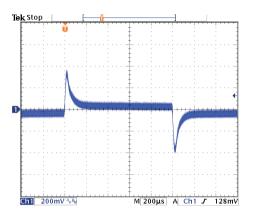




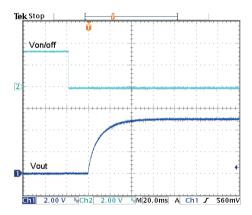
Derating Output Load versus Ambient Temperature and Airflow With 0.24" Heat-Sink , Vin(nom)



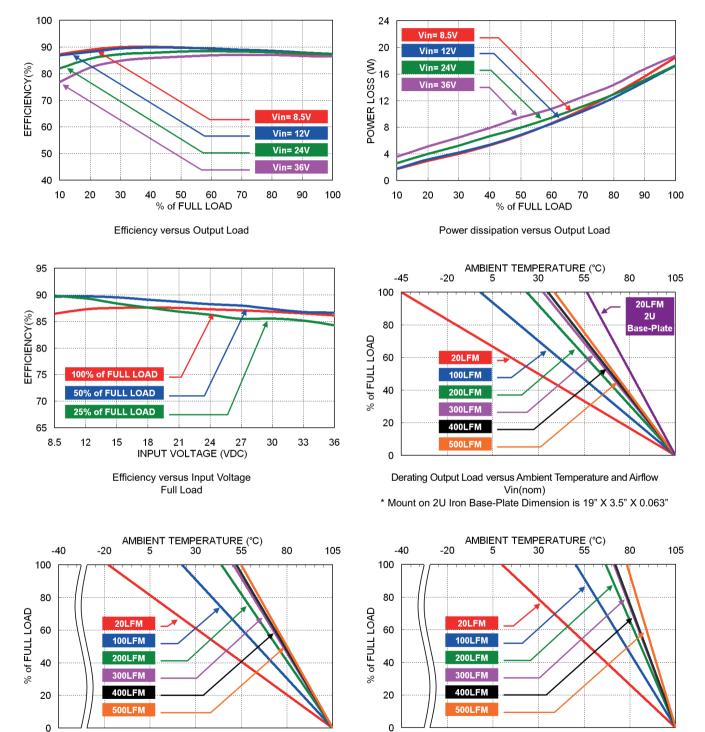
Derating Output Load versus Ambient Temperature and Airflow Vin(nom) * Mount on 2U Iron Base-Plate Dimension is 19" X 3.5" X 0.063"


AMBIENT TEMPERATURE (°C) 5 30 55 -40 -20 80 105 100 80 % of FULL LOAD 20LFM 60 100LFM 200LFM 40 300LFM 400LFM 20 500LFM 0

Derating Output Load versus Ambient Temperature and Airflow With 0.5" Heat-Sink , Vin(nom)

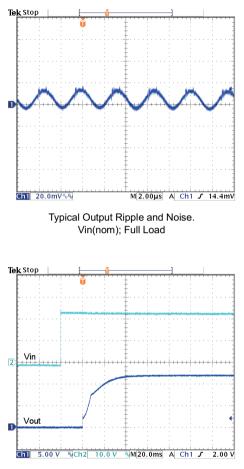

All test conditions are at 25°C.The figures are identical for PQAE150-24S05W

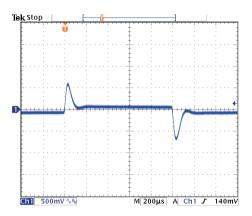
Typical Input Start-Up and Output Rise Characteristic Vin(nom); Full Load



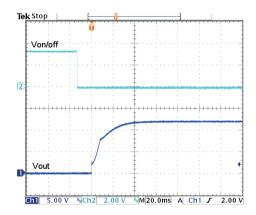
Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin(nom)

Using ON/OFF Voltage Start-Up and Output Rise Characteristic Vin(nom); Full Load

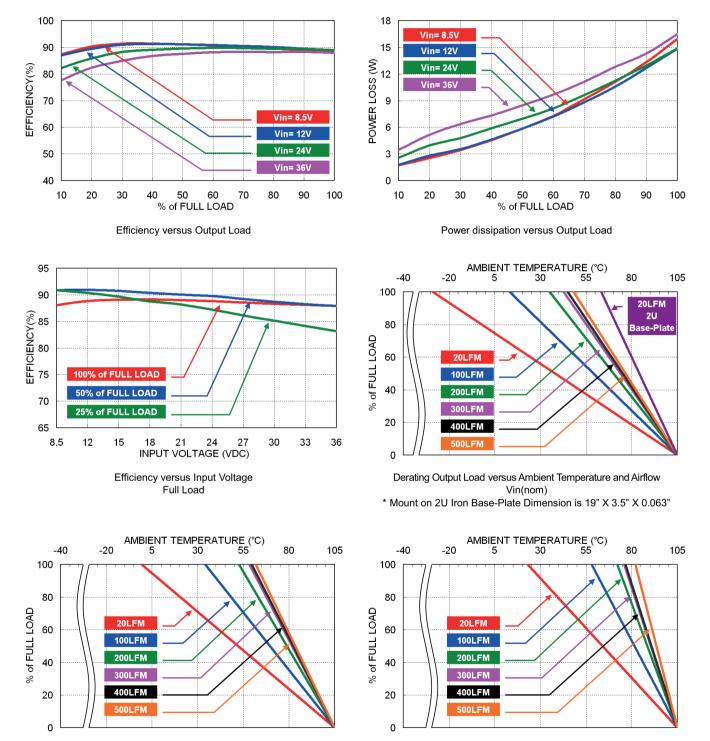

All test conditions are at 25°C.The figures are identical for PQAE150-24S12W


Derating Output Load versus Ambient Temperature and Airflow With 0.24" Heat-Sink , Vin(nom)

Derating Output Load versus Ambient Temperature and Airflow With 0.5" Heat-Sink , Vin(nom)

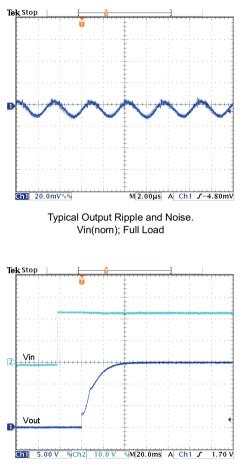

All test conditions are at 25°C.The figures are identical for PQAE150-24S12W

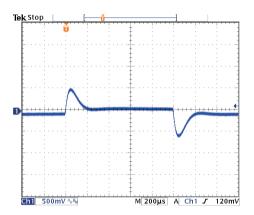
Typical Input Start-Up and Output Rise Characteristic Vin(nom); Full Load



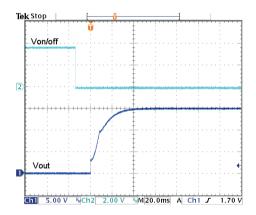
Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin(nom)

Using ON/OFF Voltage Start-Up and Output Rise Characteristic Vin(nom); Full Load

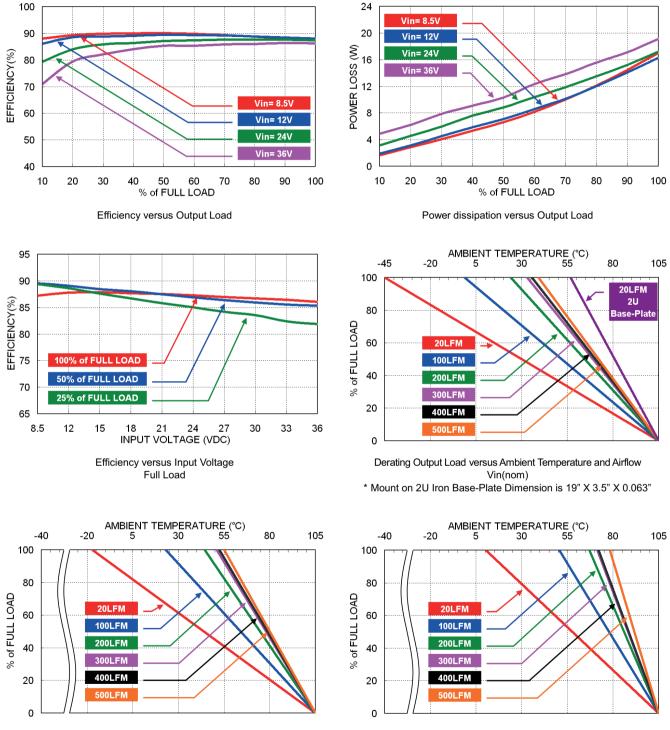

All test conditions are at 25°C.The figures are identical for PQAE150-24S15W


Derating Output Load versus Ambient Temperature and Airflow With 0.24" Heat-Sink , Vin(nom)

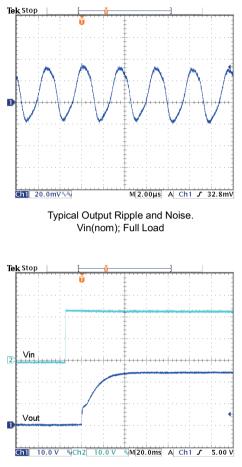
Derating Output Load versus Ambient Temperature and Airflow With 0.5" Heat-Sink , Vin(nom)


All test conditions are at 25°C.The figures are identical for PQAE150-24S15W

Typical Input Start-Up and Output Rise Characteristic Vin(nom); Full Load

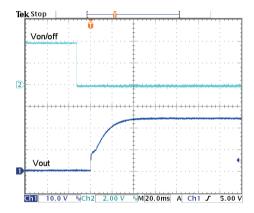


Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin(nom)

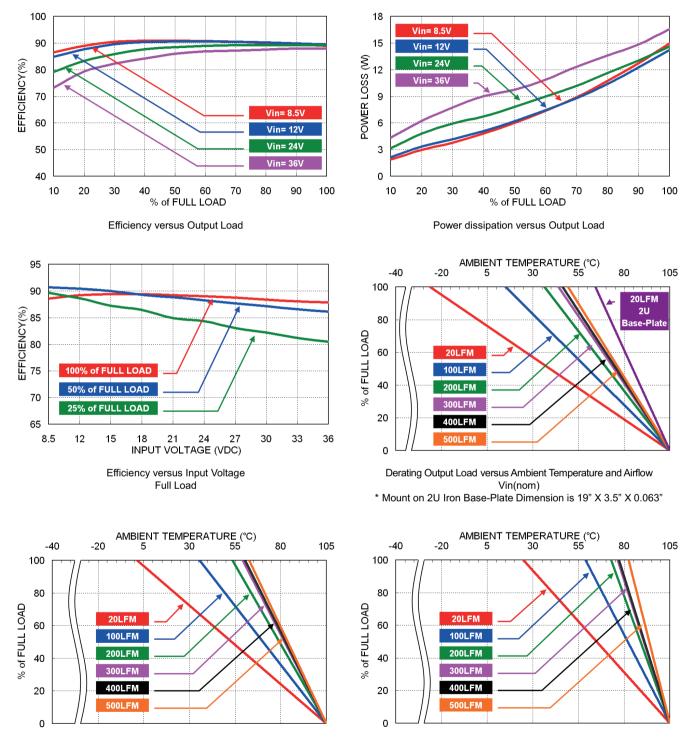

Using ON/OFF Voltage Start-Up and Output Rise Characteristic Vin(nom); Full Load

All test conditions are at 25°C.The figures are identical for PQAE150-24S24W

Derating Output Load versus Ambient Temperature and Airflow With 0.24" Heat-Sink , Vin(nom) Derating Output Load versus Ambient Temperature and Airflow With 0.5" Heat-Sink , Vin(nom)

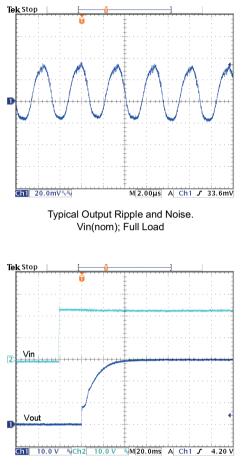

All test conditions are at 25°C.The figures are identical for PQAE150-24S24W

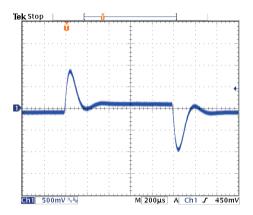
Typical Input Start-Up and Output Rise Characteristic Vin(nom); Full Load



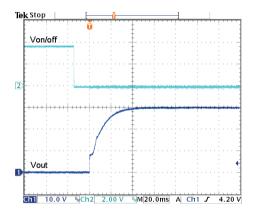
Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin(nom)

Using ON/OFF Voltage Start-Up and Output Rise Characteristic Vin(nom); Full Load

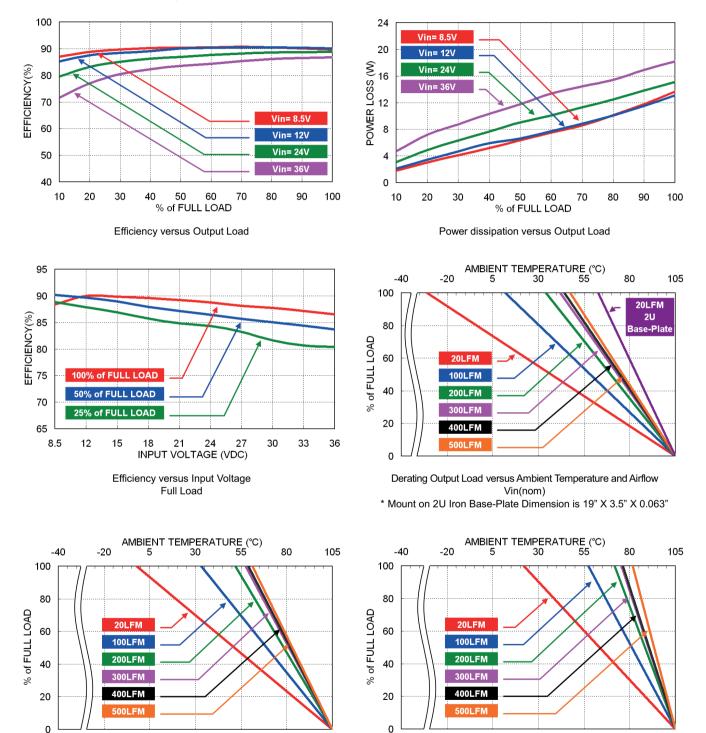

All test conditions are at 25°C.The figures are identical for PQAE150-24S30W


Derating Output Load versus Ambient Temperature and Airflow With 0.24" Heat-Sink , Vin(nom)

Derating Output Load versus Ambient Temperature and Airflow With 0.5" Heat-Sink , Vin(nom)

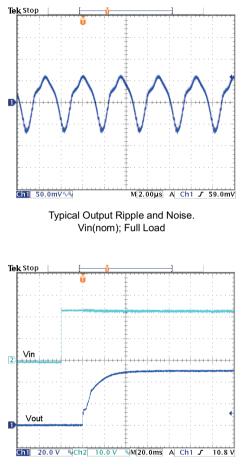

All test conditions are at 25°C.The figures are identical for PQAE150-24S30W

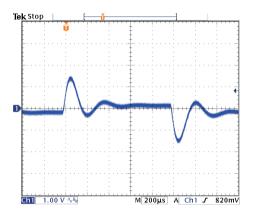
Typical Input Start-Up and Output Rise Characteristic Vin(nom); Full Load



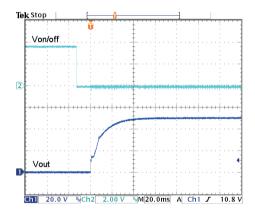
Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin(nom)

Using ON/OFF Voltage Start-Up and Output Rise Characteristic Vin(nom); Full Load

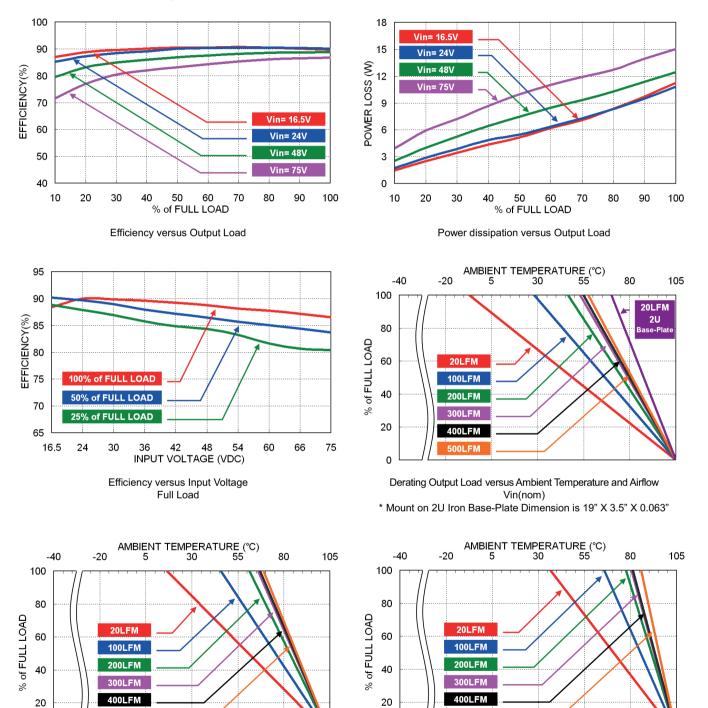

All test conditions are at 25°C.The figures are identical for PQAE150-24S48W


Derating Output Load versus Ambient Temperature and Airflow With 0.24" Heat-Sink , Vin(nom)

Derating Output Load versus Ambient Temperature and Airflow With 0.5" Heat-Sink , Vin(nom)


All test conditions are at 25°C.The figures are identical for PQAE150-24S48W

Typical Input Start-Up and Output Rise Characteristic Vin(nom); Full Load



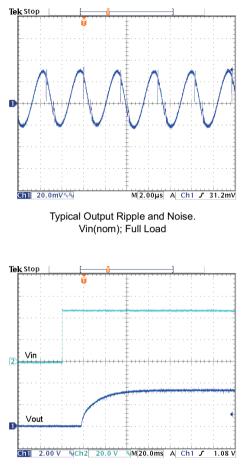
Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin(nom)

Using ON/OFF Voltage Start-Up and Output Rise Characteristic Vin(nom); Full Load

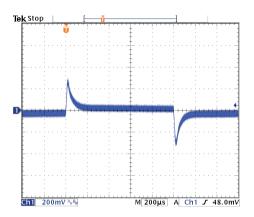
All test conditions are at 25°C.The figures are identical for PQAE150-48S3P3W

Derating Output Load versus Ambient Temperature and Airflow With 0.24" Heat-Sink , Vin(nom)

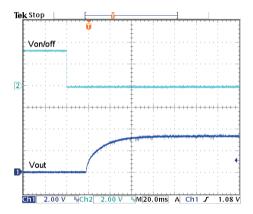
500LFM


Derating Output Load versus Ambient Temperature and Airflow With 0.5" Heat-Sink , Vin(nom)

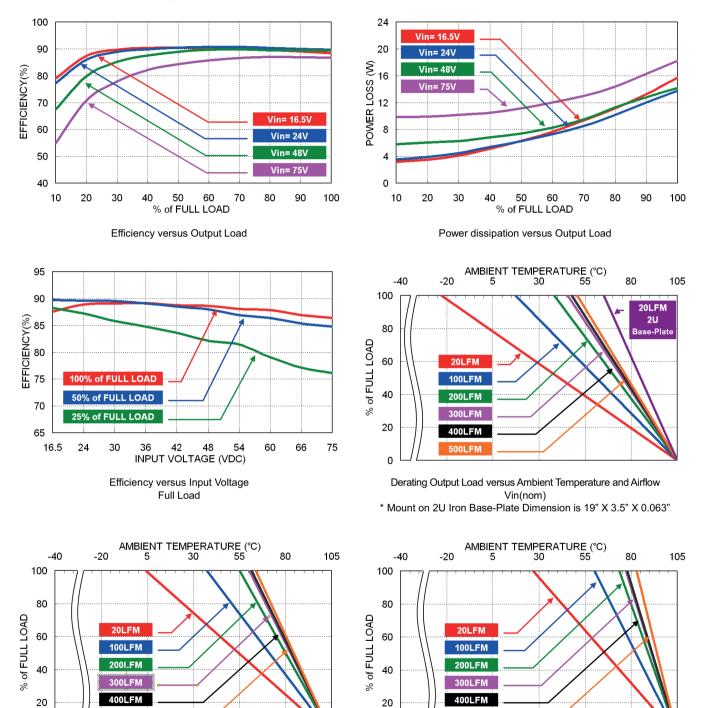
500LFN


0

0


All test conditions are at 25°C.The figures are identical for PQAE150-48S3P3W

Typical Input Start-Up and Output Rise Characteristic Vin(nom); Full Load



Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin(nom)

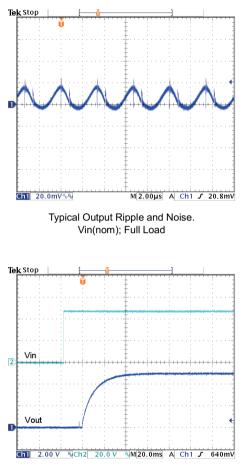
Using ON/OFF Voltage Start-Up and Output Rise Characteristic Vin(nom); Full Load

All test conditions are at 25°C.The figures are identical for PQAE150-48S05W

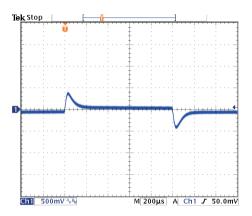
500LFM

Derating Output Load versus Ambient Temperature and Airflow

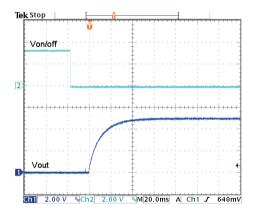
With 0.5" Heat-Sink , Vin(nom)


0

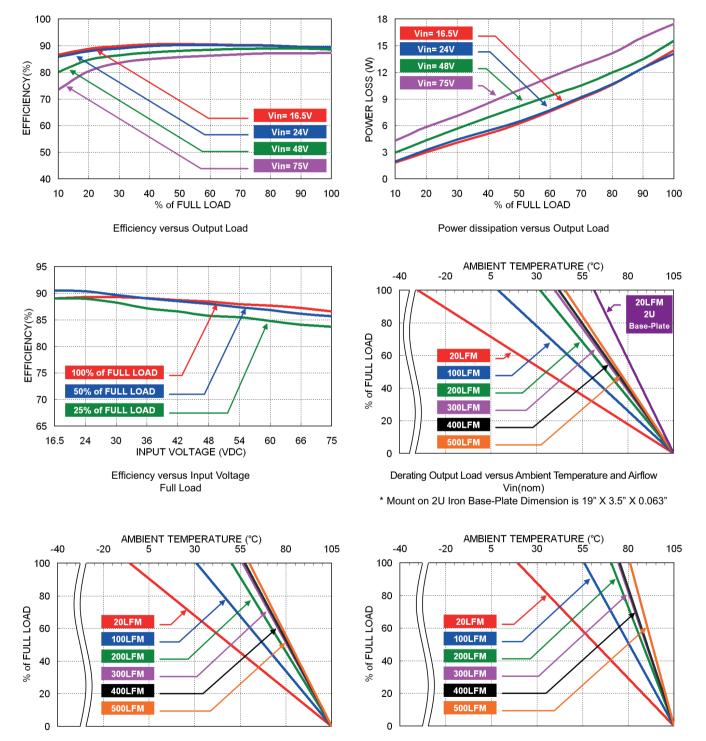
Derating Output Load versus Ambient Temperature and Airflow With 0.24" Heat-Sink , Vin(nom)


500LFM

0


All test conditions are at 25°C.The figures are identical for PQAE150-48S05W

Typical Input Start-Up and Output Rise Characteristic Vin(nom); Full Load

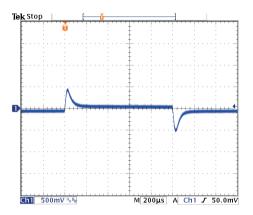


Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin(nom)

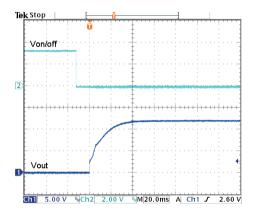
Using ON/OFF Voltage Start-Up and Output Rise Characteristic Vin(nom); Full Load

All test conditions are at 25°C.The figures are identical for PQAE150-48S12W

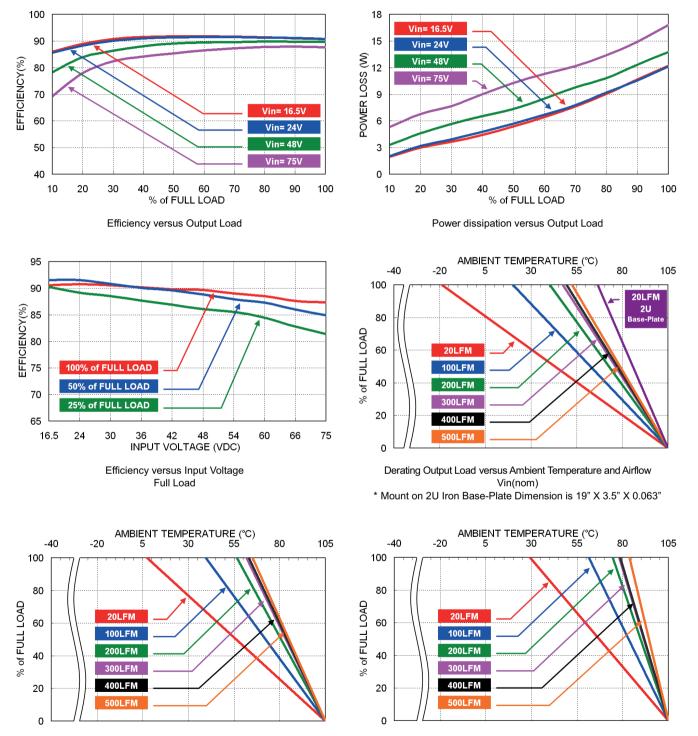
Derating Output Load versus Ambient Temperature and Airflow With 0.5" Heat-Sink , Vin(nom)


Derating Output Load versus Ambient Temperature and Airflow

With 0.24" Heat-Sink , Vin(nom)

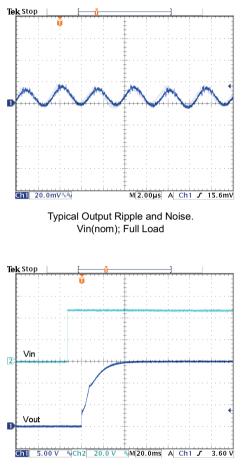

All test conditions are at 25°C.The figures are identical for PQAE150-48S12W

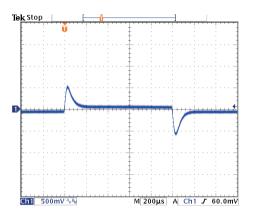
Typical Input Start-Up and Output Rise Characteristic Vin(nom); Full Load



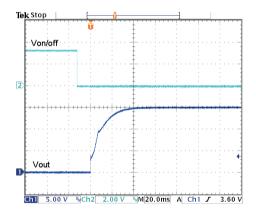
Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin(nom)

Using ON/OFF Voltage Start-Up and Output Rise Characteristic Vin(nom); Full Load

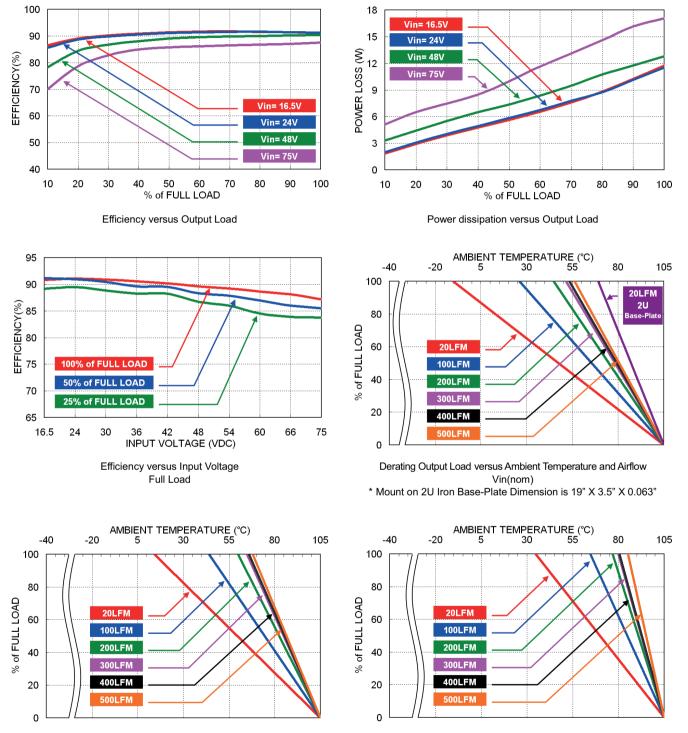

All test conditions are at 25°C.The figures are identical for PQAE150-48S15W


Derating Output Load versus Ambient Temperature and Airflow With 0.24" Heat-Sink , Vin(nom)

Derating Output Load versus Ambient Temperature and Airflow With 0.5" Heat-Sink , Vin(nom)

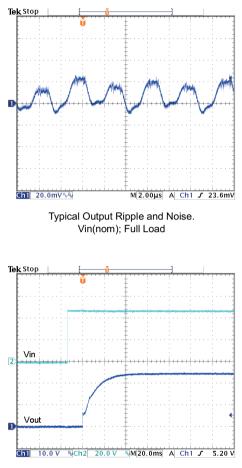

All test conditions are at 25°C.The figures are identical for PQAE150-48S15W

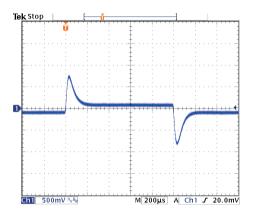
Typical Input Start-Up and Output Rise Characteristic Vin(nom); Full Load



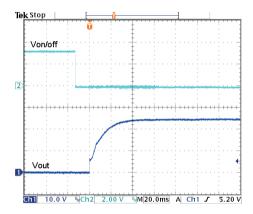
Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin(nom)

Using ON/OFF Voltage Start-Up and Output Rise Characteristic Vin(nom); Full Load


All test conditions are at 25°C.The figures are identical for PQAE150-48S24W

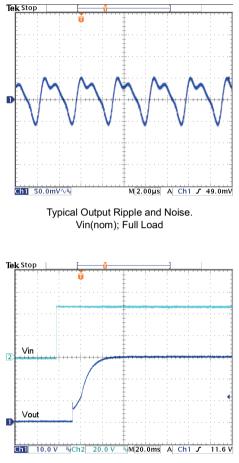

Derating Output Load versus Ambient Temperature and Airflow With 0.24" Heat-Sink , Vin(nom)

Derating Output Load versus Ambient Temperature and Airflow With 0.5" Heat-Sink , Vin(nom)

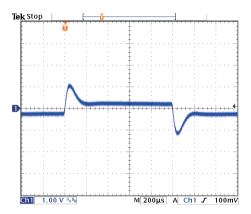

All test conditions are at 25°C.The figures are identical for PQAE150-48S24W

Typical Input Start-Up and Output Rise Characteristic Vin(nom); Full Load

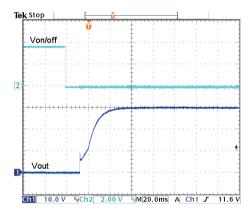
Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin(nom)


Using ON/OFF Voltage Start-Up and Output Rise Characteristic Vin(nom); Full Load

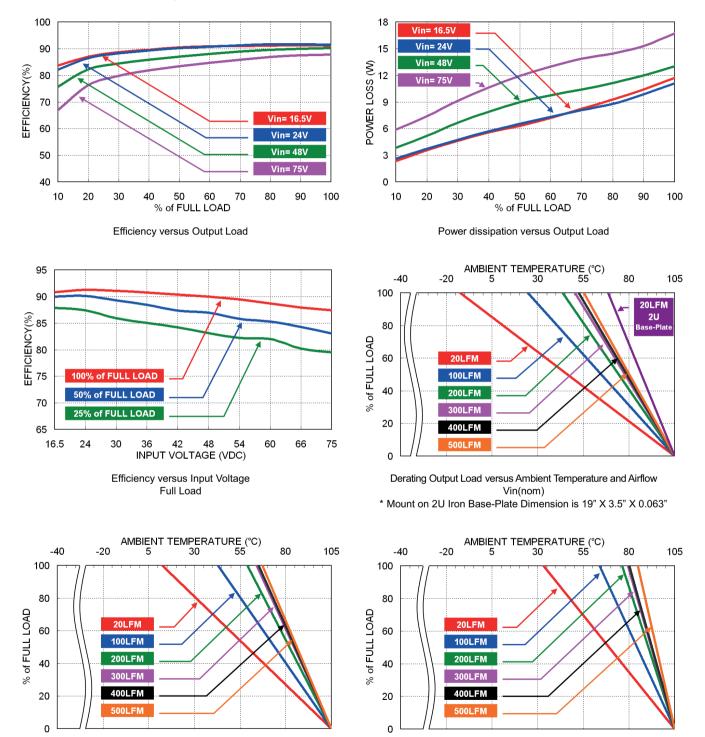
All test conditions are at 25°C.The figures are identical for PQAE150-48S30W



Derating Output Load versus Ambient Temperature and Airflow With 0.24" Heat-Sink , Vin(nom) Derating Output Load versus Ambient Temperature and Airflow With 0.5" Heat-Sink , Vin(nom)

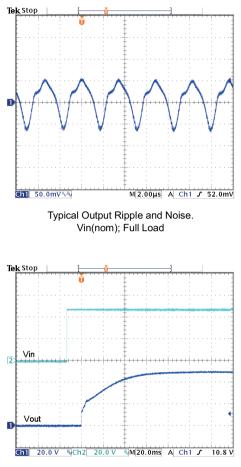

All test conditions are at 25°C.The figures are identical for PQAE150-48S30W

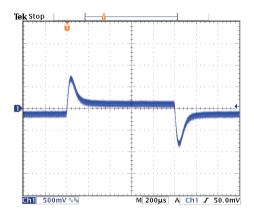
Typical Input Start-Up and Output Rise Characteristic Vin(nom); Full Load



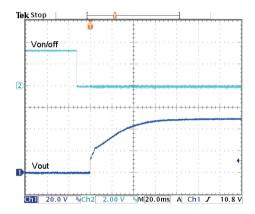
Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin(nom)

Using ON/OFF Voltage Start-Up and Output Rise Characteristic Vin(nom); Full Load

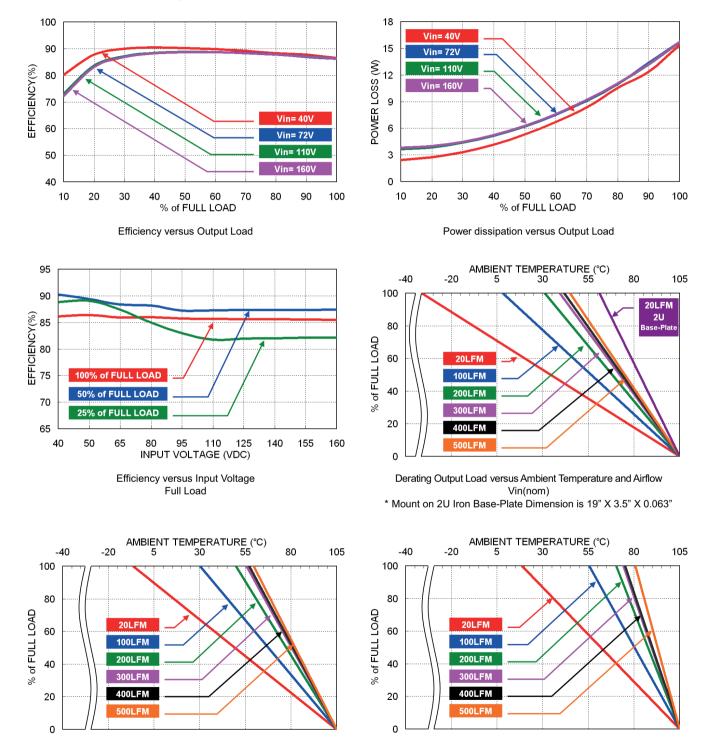

All test conditions are at 25°C.The figures are identical for PQAE150-48S48W


Derating Output Load versus Ambient Temperature and Airflow With 0.24" Heat-Sink , Vin(nom)

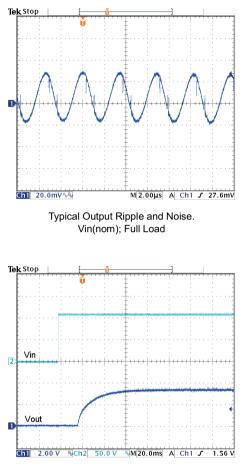
Derating Output Load versus Ambient Temperature and Airflow With 0.5" Heat-Sink , Vin(nom)


All test conditions are at 25°C.The figures are identical for PQAE150-48S48W

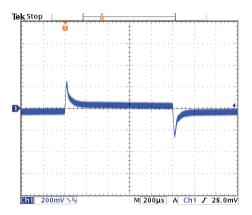
Typical Input Start-Up and Output Rise Characteristic Vin(nom); Full Load



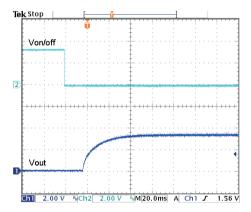
Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin(nom)


Using ON/OFF Voltage Start-Up and Output Rise Characteristic Vin(nom); Full Load

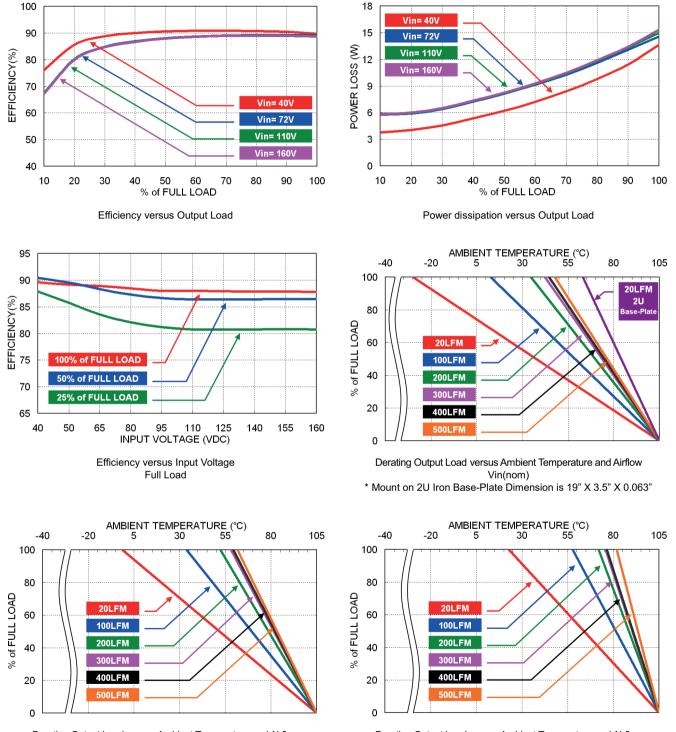
All test conditions are at 25°C.The figures are identical for PQAE150-110S3PW



Derating Output Load versus Ambient Temperature and Airflow With 0.24" Heat-Sink , Vin(nom) Derating Output Load versus Ambient Temperature and Airflow With 0.5" Heat-Sink , Vin(nom)

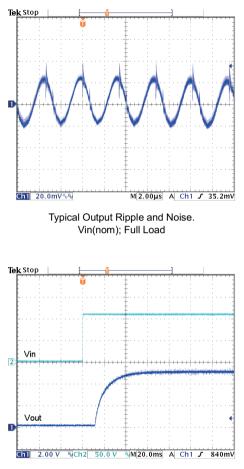

All test conditions are at 25°C.The figures are identical for PQAE150-110S3P3W

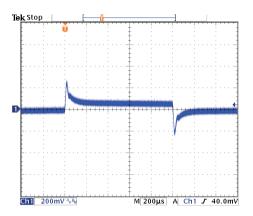
Typical Input Start-Up and Output Rise Characteristic Vin(nom); Full Load



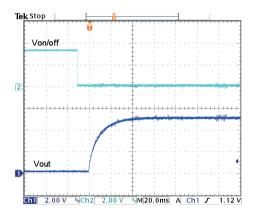
Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin(nom)

Using ON/OFF Voltage Start-Up and Output Rise Characteristic Vin(nom); Full Load

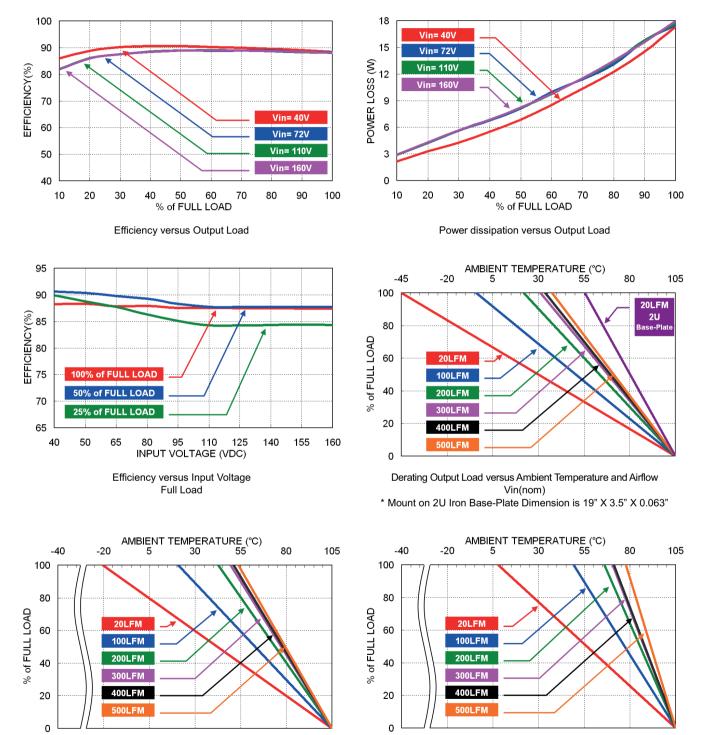

All test conditions are at 25°C.The figures are identical for PQAE150-110S05W


Derating Output Load versus Ambient Temperature and Airflow With 0.24" Heat-Sink , Vin(nom)

Derating Output Load versus Ambient Temperature and Airflow With 0.5" Heat-Sink , Vin(nom)

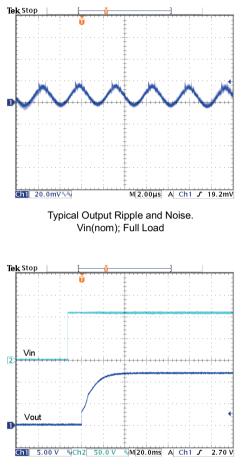

All test conditions are at 25°C.The figures are identical for PQAE150-110S05W

Typical Input Start-Up and Output Rise Characteristic Vin(nom); Full Load



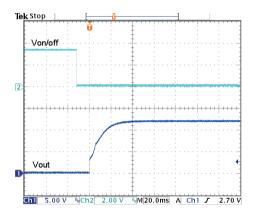
Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin(nom)

Using ON/OFF Voltage Start-Up and Output Rise Characteristic Vin(nom); Full Load

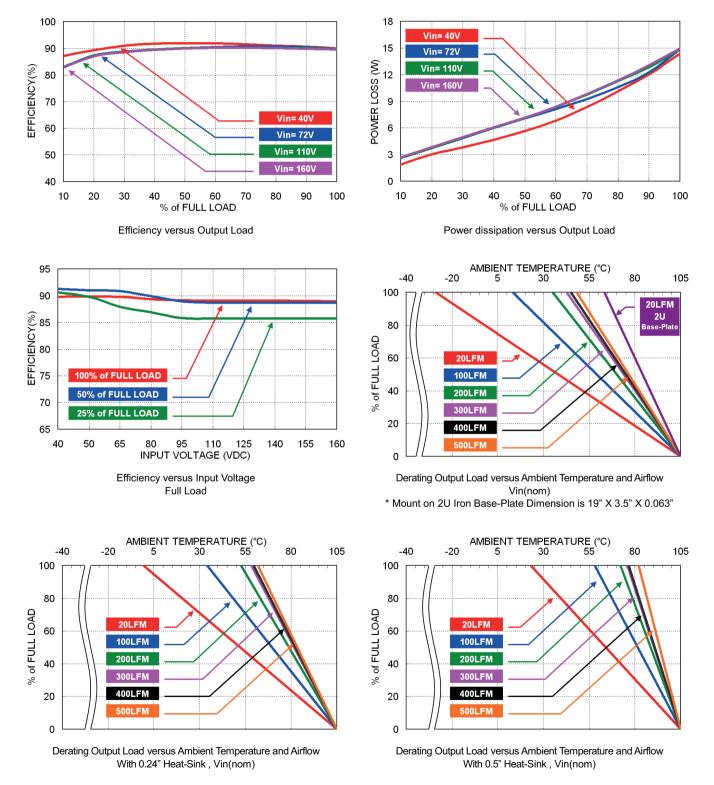

All test conditions are at 25°C.The figures are identical for PQAE150-110S12W


Derating Output Load versus Ambient Temperature and Airflow With 0.24" Heat-Sink , Vin(nom)

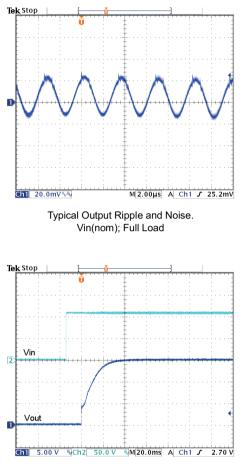
Derating Output Load versus Ambient Temperature and Airflow With 0.5" Heat-Sink , Vin(nom)


All test conditions are at 25°C.The figures are identical for PQAE150-110S12W

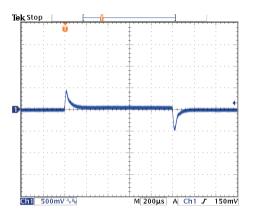
Typical Input Start-Up and Output Rise Characteristic Vin(nom); Full Load

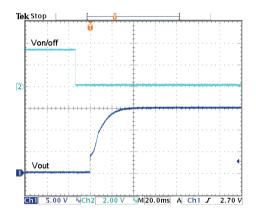


Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin(nom)

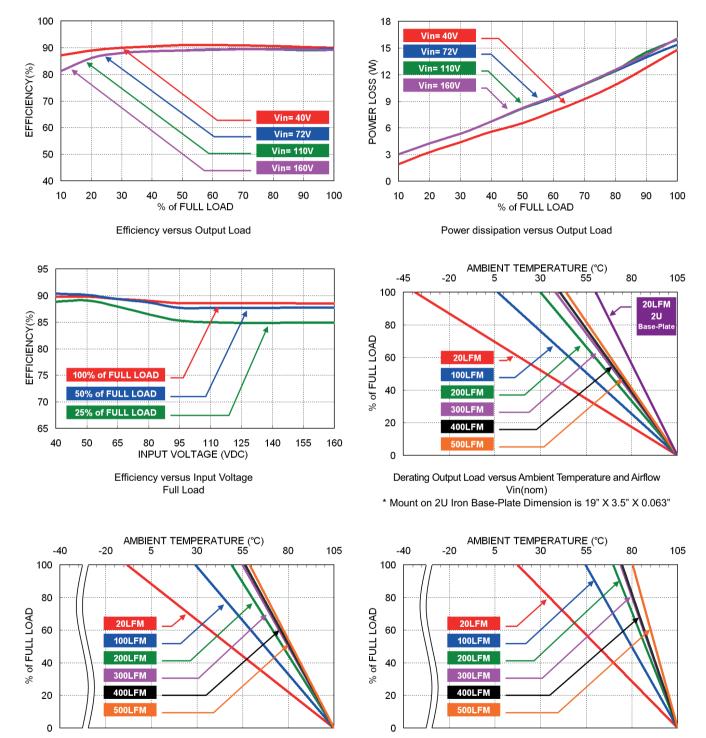


Using ON/OFF Voltage Start-Up and Output Rise Characteristic Vin(nom); Full Load


All test conditions are at 25°C.The figures are identical for PQAE150-110S15W

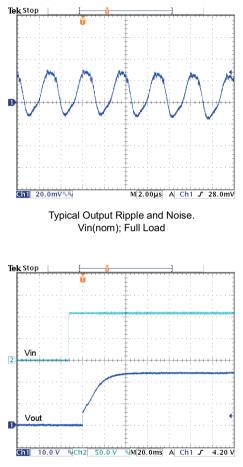

All test conditions are at 25°C.The figures are identical for PQAE150-110S15W

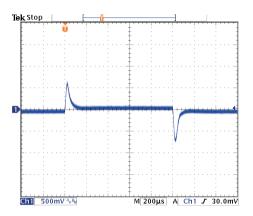
Typical Input Start-Up and Output Rise Characteristic Vin(nom); Full Load



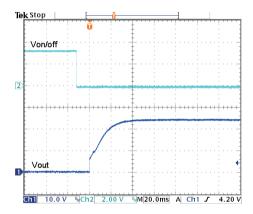
Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin(nom)

Using ON/OFF Voltage Start-Up and Output Rise Characteristic Vin(nom); Full Load

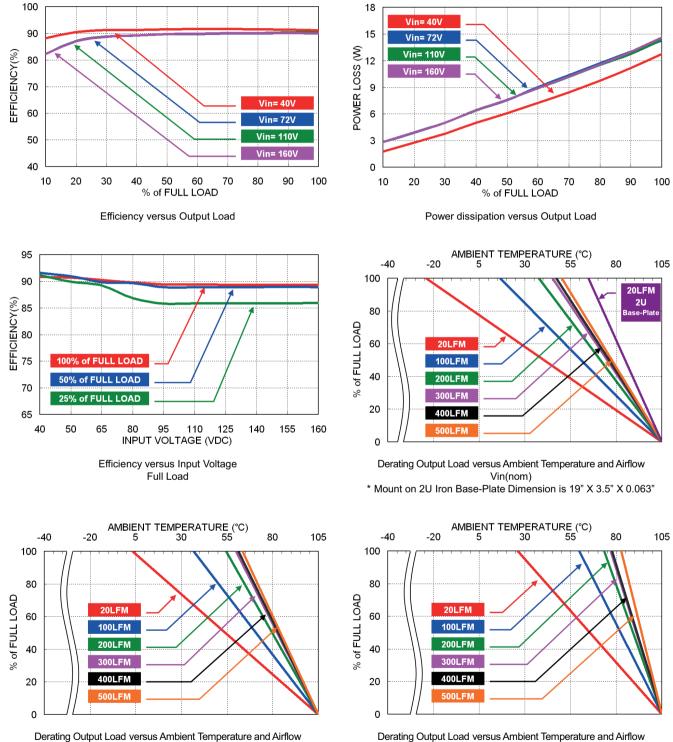

All test conditions are at 25°C.The figures are identical for PQAE150-110S24W


Derating Output Load versus Ambient Temperature and Airflow With 0.24" Heat-Sink , Vin(nom)

Derating Output Load versus Ambient Temperature and Airflow With 0.5" Heat-Sink , Vin(nom)

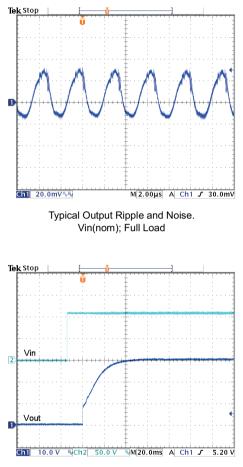

All test conditions are at 25°C.The figures are identical for PQAE150-110S24W

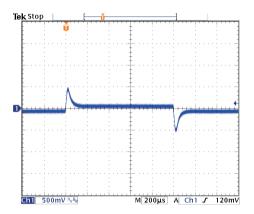
Typical Input Start-Up and Output Rise Characteristic Vin(nom); Full Load



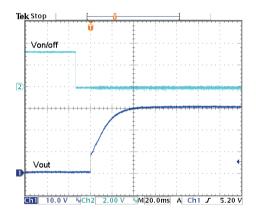
Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin(nom)

Using ON/OFF Voltage Start-Up and Output Rise Characteristic Vin(nom); Full Load

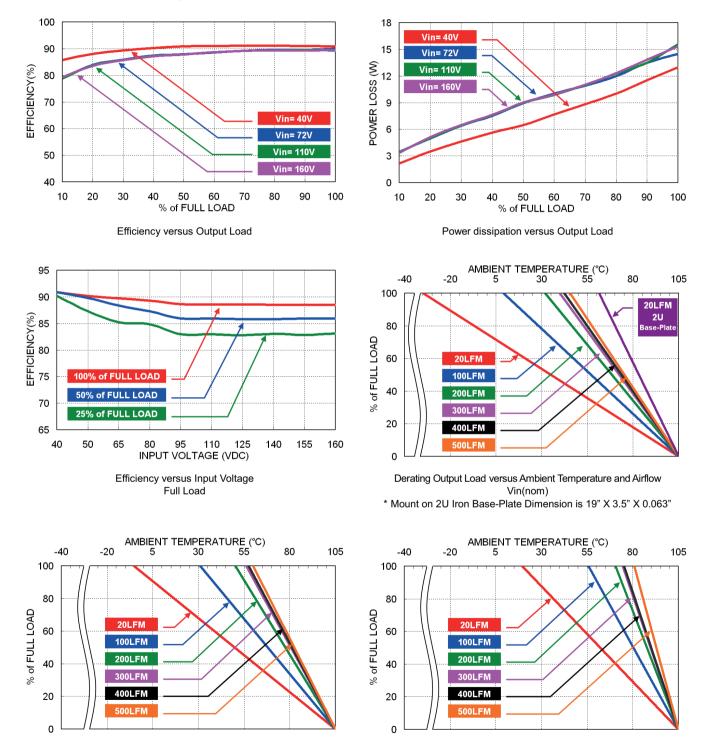

All test conditions are at 25°C.The figures are identical for PQAE150-110S28W


With 0.24" Heat-Sink , Vin(nom)

With 0.5" Heat-Sink, Vin(nom)

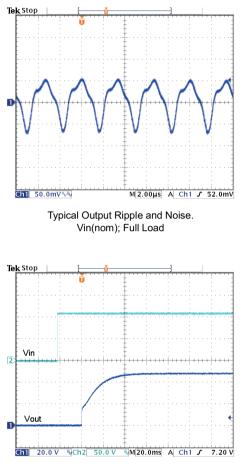

All test conditions are at 25°C.The figures are identical for PQAE150-110S28W

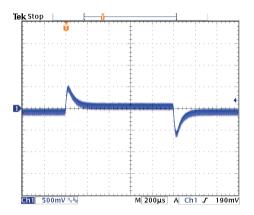
Typical Input Start-Up and Output Rise Characteristic Vin(nom); Full Load



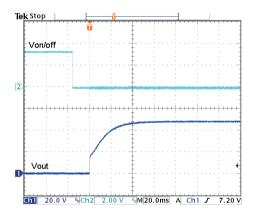
Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin(nom)

Using ON/OFF Voltage Start-Up and Output Rise Characteristic Vin(nom); Full Load


All test conditions are at 25°C.The figures are identical for PQAE150-110S48W


Derating Output Load versus Ambient Temperature and Airflow With 0.24" Heat-Sink , Vin(nom)

Derating Output Load versus Ambient Temperature and Airflow With 0.5" Heat-Sink , Vin(nom)


All test conditions are at 25°C.The figures are identical for PQAE150-110S48W

Typical Input Start-Up and Output Rise Characteristic Vin(nom); Full Load

Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin(nom)

Using ON/OFF Voltage Start-Up and Output Rise Characteristic Vin(nom); Full Load