P R B X

POWERBOX Industrial Line PQAE100W Series Up to 90W 4:1 Single Output High Performance DC/DC Converter Manual

Table of Contents	
Line protection and EMC considerations	
1. Typical application	P1
2. Line protections	P2
3. EMS considerations	P3
4. EMI considerations	P4
5. Characteristic curves	P7

Line Protection & EMC Considerations

1. Typical Application

• Below shows some blocks connected between power source and DC/DC module. Install the circuit of the block which is required.

• Each block has individual function and should be placed on the corresponding location.

If CEMI is an Aluminum electrolytic capacitor and connected in parallel with CEMS, The capacitance we recommended for meeting EMS requirements could be CEMS pluses CEMI.

Fig. 1-1 Typical Application

• Input source impedance: The power modules will operate as specifications without external components, assuming that the source voltage has a very low impedance and reasonable input voltage regulation. Highly inductive source impedances can affect the stability of the power module. Since real-world voltage source has finite impedance, performance can be improved by adding external filter capacitor. The PQAE100-24S W and PQAE100-48S W recommended Nippon Chemi-con KY series, 100µF/100V. The PQAE100-110S W recommended Ruby-con BXF series, 39µF/200V.

2. Line Protections

Fuse

• The DC/DC converter is not internally fused. An input line fuse must always be used.

• Fuses should be installed in front of each module when multiple DC/DC converters connect to the same power source.

Model	Fuse Rating (A)	Fuse Type
PQAE100-24S W	20	Slow-Blow
PQAE100-48S W	10	Slow-Blow
PQAE100-110S	4	Slow-Blow

Table 2-1 FUSE selection

• According to actual current value, calculating fuse ratings base on the following equations:

 $I_{FUSE} \ge I_{in} / (rerating x safety margin)$

Melting I²t =I²_{PULSE,act} · t / 0.22

Where

 $\mathsf{I}_{\mathsf{FUSE}}$ is current rating of fuse.

 I_{in} is actual value of input current.

Rerating is percentage of fuse rating base on ambient temperature. Fuse rating is variety under different ambient temperature.

Safety margin is percentage of fuse rating set by user.

Melting I²t is pulse energy rating of fuse.

 ${\rm I}_{\rm PULSE,act}$ is actual input pulse current.

t is the width of the input pulse current.

Reverse Input Voltage Protection

- Avoid the reverse polarity input voltage; otherwise, it will damage the DC/DC converter.
- It is likely to protect the module from the reverse input voltage by installing an external diode.
- The diode can blow the line fuse to protect DC/DC converter.
- Recommend using Schottky diode for reverse input voltage protection.

Fig. 2-1 Reverse input voltage protection

Model	Voltage Rating of the Diode	Current Rating of the Diode
PQAE100-24S	60V	1~1.5 x Fuse Rating
PQAE100-48S	100V	1~1.5 x Fuse Rating
PQAE100-110S	200V	1~1.5 x Fuse Rating

Table. 2-2 Reverse protection diode selection

3. EMS Considerations

- The module can meet EMS requirements as below.
- An external input filter capacitor is required if the module has to meet EN61000-4-4, EN61000-4-5.

Parameter	Conditions	Level	
ESD	EN61000-4-2	Air ± 8kV and Contact ± 6kV	Perf. Criteria A
Radiated immunity	EN61000-4-3	20 V/m	Perf. Criteria A
Fast transient	EN61000-4-4	± 2kV	Perf. Criteria A
Surge	EN61000-4-5	EN55024:±2kV and EN50155:±2kV	Perf. Criteria A
Conducted immunity	EN61000-4-6	10 Vr.m.s	Perf. Criteria A
Power frequency magnetic field	EN61000-4-8	100A/m continuous; 1000A/m 1 second	Perf. Criteria A

Table 3-1 EMS requirements

Fig. 3-1 Surge & EFT protections

• It should be noticed that the current path of the PCB trace. Wrong PCB layout reduces ability of suppressing SURGE or EFT.

Fig. 3-2 PCB trace

Model	Component	Specification	Reference
PQAE100-24S	C1,C2	220µF/100V	Nippon Chemi-con KY series
PQAE100-48S	C1 C2	220µF/100V	Nippon Chemi-con KY series
PQAE100-110S	C1, C2, C3	100µF/250V	Ruby-con BXF series

Table 3-2 Surge & EFT filter

4. EMI Considerations Recommended External EMI Filter for EN55032 Class A

Fig. 4-1 Recommended EMI filter for EN55032 Class A

Model	C1	C2, C3, C4	C5	C6, C7, C8	C9, C10, C11, C12,	C13, C14 L1
PQAE100-24SEW	N/A	6.8µF/50V	N/A	6.8µF/50V	1000pF/3kV	0.68µH; 17A
		1812 MLCC		1812 MLCC	1808 MLCC	SMD Inductor
						PMT-114
PQAE100-48SEEW	4.7µF/100V	4.7µF/100V	4.7µF/100V	4.7µF/100V	1000pF/3kV	3.3µH; 10A
	1812 MLCC	1812 MLCC	1812 MLCC	1812 MLCC	1808 MLCC	SMD Inductor
						PMT-102

Table 4-1 B.O.M. of external EMI filter

Fig. 4-2 Recommended Layout Pattern

Recommended External EMI Filter for EN55032 Class B

Model	C1, C2, C3, C4, C5, C6, C7, C8	C9, C10, C13, C14	C11, C12	L1
PQAE100-24S	10µF/50V	1000pF/3kV	2200pF/3kV	285µH
	1812 MLCC	1808 MLCC	1812 MLCC	Common choke PMT-102

Table 4-2 B.O.M. of external EMI filter

Recommended External EMI Filter for EN55032 Class B

Fig. 4-5 Recommended EMI filter for EN55032 Class B

Model	C1, C2, C3, C4, C5, C6, C7	C5, C6, C7, C8, C9, C10, C13	L1	
PQAE100-48S	4,7µF/100V	1000pF/3kV	620µH	285µH
	1812 MLCC	1808 MLCC	PMT-067	PMT-103

Table 4-3 Recommended EMI Filter for EN55022 Class B

Fig. 4-6 Recommended Layout Pattern

Specifications of Common Mode Choke and Differential Inductor

Part number:	РМТ-067
Inductance:	620µH ±35% (100kHz/ 100mV)
DCR:	25 mΩ
Rated current:	7.5 A, max.
Dimensions:	A 16.0, max.
	B 16.0, max.
	C 15.0, max.
	D 4.0 ±0.3
	E 10.0 ±0.3
	F 7.4 ±0.3
	G

PIN 1 MARK

∘3

G

* Recommended through hole: ϕ 1.0 mm

Part number:	PM	PMT-102		
Inductance:	3.3µ	IH ±20% (100kHz/ 250mV)		
DCR:	18 n	nΩ		
Rated current:	10 A	A, max.		
Dimensions:	А	6.5 ±0.3		
	В	6.5 ±0.3		
	С	4.2, max.		
	D	7.6, max.		
	E	1.5 ±0.3		
	F	1.2 ±0.3		
	G	3.0		
	Н	8.5		
	1	2.5		

Part number:	PMT-103		
Inductance:	285µH ±35% (100kHz/ 100mV)		
DCR:	5.5 m	ıΩ	
Rated current:	16 A,	max.	
Dimensions:	А	16.0, max.	
	В	16.0, max.	
	С	15.0, max.	
	D	3.6 ±0.3	
	Е	10.0 ±0.3	
	F	7.4 ±0.3	
	G	φ0.8 ±0.1	

 * Recommended through hole: $\phi1.0~\text{mm}$

2°

E

PIN 1 MARK

Specifications of Common Mode Choke and Differential Inductor

Part number:	PM	Г-104
Inductance:	30.1	μH ±10% (100kHz/ 100mV)
DCR:	40 n	ηΩ
Rated current:	5 A,	max.
Dimensions:	А	13.5, max.
	В	5.8, max.
	С	10.9, max.
	C1	5.2, min.
	Н	10.0, max.
	H1	14.3, max.
	K	2.3 ±0.2
	L	0.2 ±0.2

DCR:	19 ו	19 mΩ	
Rated current:	5.6	5.6 A, max.	
Dimensions:	А	16.0, max.	
	В	16.0, max.	
	С	15.0, max.	
	D	4.0 ±0.3	
	E	10.0 ±0.3	
	F	7.4 ±0.3	
	G	φ0.8 ±0.1	

2

 * Recommended through hole: $\phi1.0~\text{mm}$

Part number:	PMT-114		
Inductance:	0.68µH ±20% (100kHz/250mV)		
DCR:	3.8 mΩ		
Rated current:	17 A, max.		
Dimensions:	А	7.8, max.	
	В	7.0, max.	
	С	4.2, max.	
	D	2.0 ±0.5	
	Е	1.2 ±0.3	
	F	3.5	
	G	3.7	
	Н	8.0	

5. Characteristic Curves

All test conditions are at 25°C.The figures are identical for PQAE100-24S3P3W

105 % of FULL LOAD 60 100LFM 200LFM 40 300LFM 400LFM 20 500LFM 0

Derating Output Load versus Ambient Temperature and Airflow With 0.5" Heat-Sink , Vin(nom)

100LFM

200LFM

300LFM

400LFM

500LFM

Derating Output Load versus Ambient Temperature and Airflow

With 0.24" Heat-Sink , Vin(nom)

40

20

0

All test conditions are at 25°C.The figures are identical for PQAE100-24S3P3W

Typical Input Start-Up and Output Rise Characteristic Vin(nom); Full Load

Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin(nom)

Using ON/OFF Voltage Start-Up and Output Rise Characteristic Vin(nom); Full Load

All test conditions are at 25°C.The figures are identical for PQAE100-24S05W

Derating Output Load versus Ambient Temperature and Airflow With 0.24" Heat-Sink , Vin(nom)

500LFM

Derating Output Load versus Ambient Temperature and Airflow Vin(nom) * Mount on 2U Iron Base-Plate Dimension is 19" X 3.5" X 0.063"

Derating Output Load versus Ambient Temperature and Airflow With 0.5" Heat-Sink , Vin(nom)

0

All test conditions are at 25°C.The figures are identical for PQAE100-24S05W

Typical Input Start-Up and Output Rise Characteristic Vin(nom); Full Load

Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin(nom)

Using ON/OFF Voltage Start-Up and Output Rise Characteristic Vin(nom); Full Load

All test conditions are at 25°C.The figures are identical for PQAE100-24S12W

Derating Output Load versus Ambient Temperature and Airflow With 0.24" Heat-Sink , Vin(nom) Derating Output Load versus Ambient Temperature and Airflow With 0.5" Heat-Sink, Vin(nom)

100

105

105

All test conditions are at 25°C.The figures are identical for PQAE100-24S12W

Typical Input Start-Up and Output Rise Characteristic Vin(nom); Full Load

Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin(nom)

Using ON/OFF Voltage Start-Up and Output Rise Characteristic Vin(nom); Full Load

All test conditions are at 25°C.The figures are identical for PQAE100-24S15W

Derating Output Load versus Ambient Temperature and Airflow With 0.24" Heat-Sink , Vin(nom)

All test conditions are at 25°C.The figures are identical for PQAE100-24S15W

Typical Input Start-Up and Output Rise Characteristic Vin(nom); Full Load

Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin(nom)

Using ON/OFF Voltage Start-Up and Output Rise Characteristic Vin(nom); Full Load

All test conditions are at 25°C.The figures are identical for PQAE100-24S24W

Derating Output Load versus Ambient Temperature and Airflow With 0.24" Heat-Sink , Vin(nom)

All test conditions are at 25°C.The figures are identical for PQAE100-24S24W

Typical Input Start-Up and Output Rise Characteristic Vin(nom); Full Load

Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin(nom)

Using ON/OFF Voltage Start-Up and Output Rise Characteristic Vin(nom); Full Load

All test conditions are at 25°C.The figures are identical for PQAE100-24S30W

Derating Output Load versus Ambient Temperature and Airflow With 0.24" Heat-Sink , Vin(nom)

All test conditions are at 25°C.The figures are identical for PQAE100-24S30W

Typical Input Start-Up and Output Rise Characteristic Vin(nom); Full Load

Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin(nom)

Using ON/OFF Voltage Start-Up and Output Rise Characteristic Vin(nom); Full Load

All test conditions are at 25°C.The figures are identical for PQAE100-24S48W

Derating Output Load versus Ambient Temperature and Airflow With 0.24" Heat-Sink , Vin(nom)

All test conditions are at 25°C.The figures are identical for PQAE100-24S48W

Typical Input Start-Up and Output Rise Characteristic Vin(nom); Full Load

Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin(nom)

Using ON/OFF Voltage Start-Up and Output Rise Characteristic Vin(nom); Full Load

All test conditions are at 25°C.The figures are identical for PQAE100-48S3P3W

Derating Output Load versus Ambient Temperature and Airflow With 0.24" Heat-Sink , Vin(nom)

All test conditions are at 25°C.The figures are identical for PQAE100-48S3P3W

Typical Input Start-Up and Output Rise Characteristic Vin(nom); Full Load

Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin(nom)

Using ON/OFF Voltage Start-Up and Output Rise Characteristic Vin(nom); Full Load

All test conditions are at 25°C.The figures are identical for PQAE100-48S05W

Derating Output Load versus Ambient Temperature and Airflow Derating Output Load versus Ambient Temperature and Airflow With 0.24" Heat-Sink , Vin(nom)

80

90

85

85

With 0.5" Heat-Sink , Vin(nom)

105

20LFM

2U

Base-Plate

100

105

All test conditions are at 25°C.The figures are identical for PQAE100-48S05W

Typical Input Start-Up and Output Rise Characteristic Vin(nom); Full Load

Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin(nom)

Using ON/OFF Voltage Start-Up and Output Rise Characteristic Vin(nom); Full Load

All test conditions are at 25°C.The figures are identical for PQAE100-48S12W

Derating Output Load versus Ambient Temperature and Airflow With 0.24" Heat-Sink , Vin(nom) Derating Output Load versus Ambient Temperature and Airflow With 0.5" Heat-Sink , Vin(nom)

100

105

105

All test conditions are at 25°C.The figures are identical for PQAE100-48S12W

Typical Input Start-Up and Output Rise Characteristic Vin(nom); Full Load

Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin(nom)

Using ON/OFF Voltage Start-Up and Output Rise Characteristic Vin(nom); Full Load

All test conditions are at 25°C. The figures are identical for PQAE100-48S15W

Derating Output Load versus Ambient Temperature and Airflow With 0.24" Heat-Sink , Vin(nom)

All test conditions are at 25°C.The figures are identical for PQAE100-48S15W

Typical Input Start-Up and Output Rise Characteristic Vin(nom); Full Load

Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin(nom)

Using ON/OFF Voltage Start-Up and Output Rise Characteristic Vin(nom); Full Load

All test conditions are at 25°C.The figures are identical for PQAE100-48S24W

Derating Output Load versus Ambient Temperature and Airflow With 0.24" Heat-Sink , Vin(nom)

All test conditions are at 25°C.The figures are identical for PQAE100-48S24W

Typical Input Start-Up and Output Rise Characteristic Vin(nom); Full Load

Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin(nom)

Using ON/OFF Voltage Start-Up and Output Rise Characteristic Vin(nom); Full Load

All test conditions are at 25°C.The figures are identical for PQAE100-48S30W

Derating Output Load versus Ambient Temperature and Airflow With 0.24" Heat-Sink , Vin(nom)

Derating Output Load versus Ambient Temperature and Airflow With 0.5" Heat-Sink , Vin(nom)

100

105

105

20LFM

2U

Base-Plate

90

All test conditions are at 25°C.The figures are identical for PQAE100-48S30W

Typical Input Start-Up and Output Rise Characteristic Vin(nom); Full Load

Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin(nom)

Using ON/OFF Voltage Start-Up and Output Rise Characteristic Vin(nom); Full Load

All test conditions are at 25°C.The figures are identical for PQAE100-48S48W

Derating Output Load versus Ambient Temperature and Airflow With 0.24" Heat-Sink , Vin(nom)

All test conditions are at 25°C.The figures are identical for PQAE100-48S48W

Typical Input Start-Up and Output Rise Characteristic Vin(nom); Full Load

Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin(nom)

Using ON/OFF Voltage Start-Up and Output Rise Characteristic Vin(nom); Full Load

All test conditions are at 25°C.The figures are identical for PQAE100-110S3P3W

Derating Output Load versus Ambient Temperature and Airflow With 0.5" Heat-Sink , Vin(nom)

With 0.24" Heat-Sink , Vin(nom)

37

100

105

105

All test conditions are at 25°C.The figures are identical for PQAE100-110S3P3W

Typical Input Start-Up and Output Rise Characteristic Vin(nom); Full Load

Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin(nom)

Using ON/OFF Voltage Start-Up and Output Rise Characteristic Vin(nom); Full Load

All test conditions are at 25°C.The figures are identical for PQAE100-110S05W

Derating Output Load versus Ambient Temperature and Airflow With 0.24" Heat-Sink , Vin(nom)

All test conditions are at 25°C.The figures are identical for PQAE100-110S05W

Typical Input Start-Up and Output Rise Characteristic Vin(nom); Full Load

Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin(nom)

Using ON/OFF Voltage Start-Up and Output Rise Characteristic Vin(nom); Full Load

All test conditions are at 25°C.The figures are identical for PQAE100-110S12W

All test conditions are at 25°C.The figures are identical for PQAE100-110S12W

Typical Input Start-Up and Output Rise Characteristic Vin(nom); Full Load

Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin(nom)

Using ON/OFF Voltage Start-Up and Output Rise Characteristic Vin(nom); Full Load

All test conditions are at 25°C.The figures are identical for PQAE100-110S15W

Derating Output Load versus Ambient Temperature and Airflow With 0.24" Heat-Sink , Vin(nom)

All test conditions are at 25°C.The figures are identical for PQAE100-110S15W

Typical Input Start-Up and Output Rise Characteristic Vin(nom); Full Load

Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin(nom)

Using ON/OFF Voltage Start-Up and Output Rise Characteristic Vin(nom); Full Load

All test conditions are at 25°C.The figures are identical for PQAE100-110S24W

Derating Output Load versus Ambient Temperature and Airflow With 0.24" Heat-Sink , Vin(nom) Derating Output Load versus Ambient Temperature and Airflow With 0.5" Heat-Sink , Vin(nom)

100

105

105

All test conditions are at 25°C.The figures are identical for PQAE100-110S24W

Typical Input Start-Up and Output Rise Characteristic Vin(nom); Full Load

Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin(nom)

Using ON/OFF Voltage Start-Up and Output Rise Characteristic Vin(nom); Full Load

All test conditions are at 25°C.The figures are identical for PQAE100-110S30W

Derating Output Load versus Ambient Temperature and Airflow With 0.24" Heat-Sink , Vin(nom)

All test conditions are at 25°C.The figures are identical for PQAE100-110S30

Typical Input Start-Up and Output Rise Characteristic Vin(nom); Full Load

Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin(nom)

Using ON/OFF Voltage Start-Up and Output Rise Characteristic Vin(nom); Full Load

All test conditions are at 25°C.The figures are identical for PQAE100-110S48W

Derating Output Load versus Ambient Temperature and Airflow With 0.24" Heat-Sink , Vin(nom)

All test conditions are at 25°C.The figures are identical for PQAE100-110S48W

Typical Input Start-Up and Output Rise Characteristic Vin(nom); Full Load

Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin(nom)

Using ON/OFF Voltage Start-Up and Output Rise Characteristic Vin(nom); Full Load