
P R B X

Table of Contents

1. Introduction	P1
2. DC/DC converter features	P1
3. Electrical block diagram	P2
4. Technical specification	P3
5. Main features and functions	P6
5.1 Operating temperature range	P6
5.2 Over current protection	P6
6. Applications	P6
6.1 Recommended layout, PCB footprint and soldering information	P6
6.2 Power de-rating	P7
6.3 Efficiency VS load	P8
6.4 Input capacitance at the power module	P11
6.5 Test set-up	P11
6.6 Output ripple and noise measurement	P11
6.7 Output capacitance	P12
7. Safety & EMC	P12
7.1 Input fusing and safety considerations	P12
7.2 EMC considerations	P12
8. Mechanical specifications	P15
8.1 Mechanical outline diagrams	P15

POWERBOX Industrial Line MAB05 Series 3W 4:1 Single and Dual Output DC/DC Converter Manual V10

1. Introduction

The MAB05 series offer 2-3 watts of output power in a 24 pin DIP and SMD copper package. The MAB series has a 4:1 wide input voltage range of 9-36VDC and 18-72VDC, and provides a precisely regulated output. This series has features such as high efficiency, 500VDC,1500VDC, 3KVDC of isolation and allows an ambient operating temperature range of -25°C to 71°C (de-rating above 71°C). The modules are fully protected against output short circuit. All models are very suitable for distributed power architectures, telecommunications, battery operated equipment and industrial applications.

2. DC/DC Converter Features

2-3W isolated output	
DIP-24 / SMD package	
Efficiency up to 77%	
4:1 input range	
Regulated outputs	
Pi Input filter	
Continuous short circuit protection	

3. Electrical Block Diagram

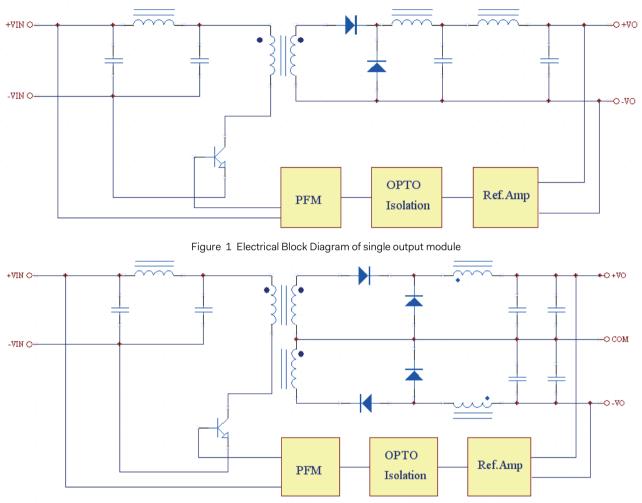


Figure 2 Electrical Block Diagram of dual output module

4. Technical Specifications (All specifications are typical at nominal input, full load at 25°C unless otherwise noted.)

Absolute Maximum Ratings

Parameters	Notes and Conditions	Device	Min	Typical	Max	Units
Input voltage						
Continuous		24Vin	-0.3		36	VDC
		48Vin	-0.3		72	VDC
Transient	100ms	24Vin			50	VDC
		48Vin			100	VDC
Operating ambient temperature	De-rating, above 71 °C	All	-25		+71	°C
Case temperature	Plastic case	All			95	°C
	Copper case	All			100	°C
Storage temperature		All	-40		+100	°C
Input/output isolation voltage	1 minute (M/S)	MAB 05 XXX	500			VDC
	(H)	MAB 05 XXX	ЗK			VDC
	(HM/HMS)	MAB 05 XXX	1.5K			VDC

Input Characteristics

Parameters	Notes and Conditions	Device	Min	Typical	Max	Units
Operating input voltage		24Vin	9	24	36	VDC
		48Vin	18	48	72	VDC
Maximum input current	Full load, Vin=9V	24Vin		470		mA
	Full load, Vin =18V	48Vin		240		mA
No-load input current	Vin=24V	Vo=3.3VDC		15		mA
		Vo=5VDC		15		mA
		Vo=12VDC		15		mA
		Vo=15VDC		25		mA
		Vo=±5VDC		25		mA
		Vo=±12VDC	;	25		mA
		Vo=±15VDC	;	15		mA
	Vin=48V	Vo=3.3VDC		7.5		mA
		Vo=5VDC		7.5		mA
		Vo=12VDC		7.5		mA
		Vo=15VDC		12		mA
		Vo=±5VDC		12		mA
		Vo=±12VDC	;	12		mA
		Vo=±15VDC	:	7.5		mA

Output Characteristics

Parameters	Notes and Conditions	Device	Min	Typical	Max	Units
Output voltage set point	Vin=Nominal input, Io = Iomax2.5VDC	Vo=3.3VDC	3.234	3.3	3.366	VDC
		Vo=5VDC	4.9	5	5.1	VDC
		Vo=12VDC	11.76	12	12.24	VDC
		Vo=15VDC	14.7	15	15.3	VDC
		Vo=±5VDC	±4.9	±5	±5.1	VDC
		Vo=±12VDC	±11.76	±12	±15.3	VDC
		Vo=±15VDC	±14.7	±15	±15.3	VDC
Output voltage balance	Vin nominal, input, lo=lomax	Dual			±1.0	%
Output voltage regulation						
Load regulation	lo=full Load to 10% load	Single			±0.5	%
	lo=full Load to 25% load	Dual			±1.0	%
Line regulation	Vin=low line to high line, full load	All			±0.5	%
Temperature coefficient	Ta=-25°C to 71°C	All			±0.05	%/°C
Output voltage ripple and noi	se (5Hz to 20MHz bandwidth)					
Peak-to-Peak	Vin=nominal input, lo=full load	Vo=3.3VDC			100	mV
	(with 0.1uF MLCC for SMD package)	Vo=5VDC			100	mV
		Vo=12VDC			100	mV
		Vo=15VDC			100	mV
		Vo=±5VDC			100	mV
		Vo=±12VDC			120	mV
		Vo=±15VDC			150	mV
Operating output current ran	ge	Vo=3.3VDC			600	mV
		Vo=5VDC			600	mV
		Vo=12VDC			250	mV
		Vo=15VDC			200	mV
		Vo=±5VDC			±300	mV
		Vo=±12VDC			±125	mV
		Vo=±15VDC			±100	mV
Output DC current limit incep	otion Vo=90% Vo, nominal	All	120			%

Dynamic Characteristics									
Parameters	Notes and Conditions	Device N	/lin	Typical	Max	Units			
Turn-on delay and rise time									
Turn-on delay time, from input	Vin, nominal to 90%Vo, set	Vo=3.3&5V		0.5	1.2	ms			
		Others		4	12	ms			
Output voltage rise time	10%Vo, set to 90%Vo, set	Vo=3.3&5V		0.5	1.2	ms			
		Others		4	12	ms			

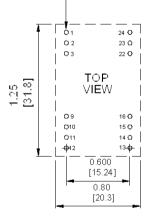
Efficiency						
Parameters	Notes and Conditions	Device	Min	Typical	Max	Units
100% load	Vin=24V	MAB 05 006		72		%
		MAB 05 009		76		%
		MAB 05 012		76		%
		MAB 05 015		70		%
		MAB 05 018		72		%
		MAB 05 021		72		%
		MAB 05 003		70		%
	VIN=48V	MAB 05 027		72		%
		MAB 05 030		77		%
		MAB 05 033		77		%
		MAB 05 036		71		%
		MAB 05 039		72		%
		MAB 05 042		72		%
		MAB 05 024		70		%
Isolation Characteristics						
Parameters	Notes and Conditions	Device	Min	Typical	Max	Units
Isolation voltage	Input to output, 1 minute	MAB 05 XXX	500			VDC
		(M/MS)				
		MAB 05 XXX	3K			VDC
		(H)				
		MAB 05 XXX	1.5K			VDC
		(HM/HMS)				
Isolation resistance	Input to output	All	1000			MΩ
Isolation capacitance	Input to output	MAB 05 XXX		300		pF
		(H)				
		Others		600		pF
Feature Characteristics						
Parameters	Notes and Conditions	Device	Min	Typical	Max	Units
Switching frequency		All	100			KHz
General Specifications						
Parameters	Notes and Conditions	Device	Min	Typical	Max	Units
MTBF	lo=100% of lo, max:	All		2800		Khours
	Ta=25°C per MIL-HDBK-217F					
Weight		All		12.5		grams

5. Main Features and Functions

5.1 Operating Temperature Range

The MAB05 series converters can be operated by a wide ambient temperature range from -25°C to 71°C (de-rating above 71°C). The standard models case temperature should not be exceeded 100°C at normal operating (detail see content 6.2).

5.2 Over Current Protection

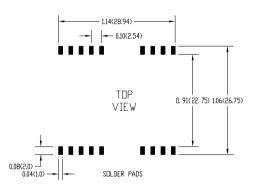

All models have internal over current and continuous short circuit protection. The unit operates normally once the fault condition is removed. At the point of current limit inception, the converter will go into over current protection.

6. Applications

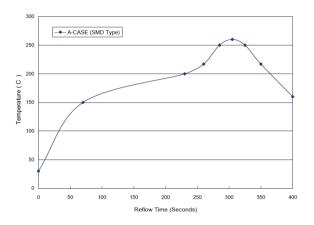
6.1 Recommended Layout, PCB Footprint and Soldering Information

The system designer or the end user must ensure that other components and metal in the vicinity of the converter meet the spacing requirements to which the system is approved. Low resistance and low inductance PCB layout traces are the norm and should be used where possible. Due consideration must also be given to proper low impedance tracks between power module, input and output grounds. The recommended footprints and soldering profiles are shown below.

() 250 200 150 0 0 0 50 0 0 50 100 150 Time (Seconds)


Lead Free Wave Soldering Profile

Note:


1. Soldering Materials: Sn/Cu/Ni

2. Ramp up rate during preheat: 1.4°C/Sec (From 50°C to 100°C) 3. Soaking temperature: 0.5°C/Sec (From 100°C to 130°C), 60±20 seconds

- 4. Peak temperature: 260°C, above 250°C3~6 Seconds
- 5. Ramp up rate during cooling: -10.0°C/Sec (From 260°Cto 150°C)

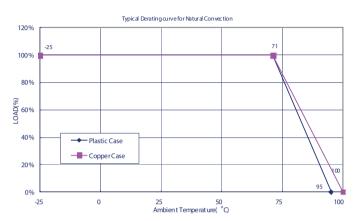
Lead Free Hot Air Reflow Profile

Note:

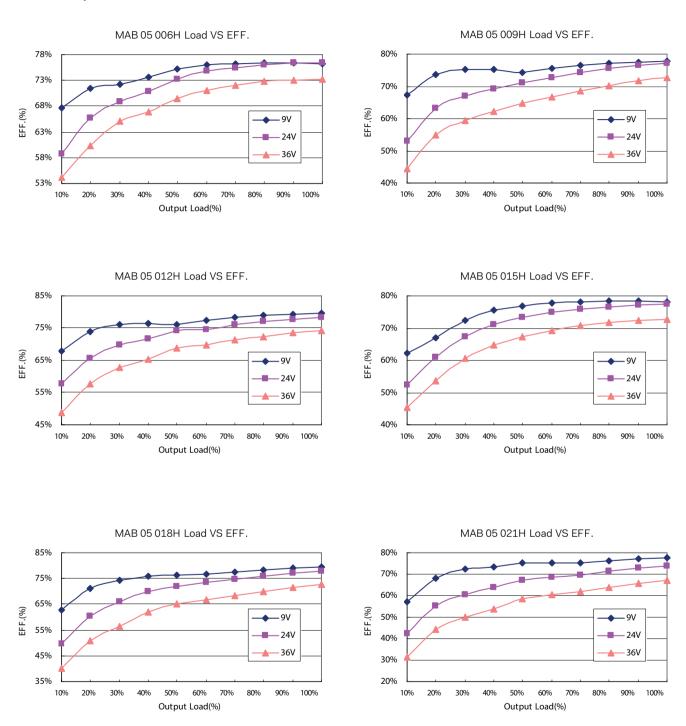
1. Soldering Paste: SHENMAO PF610-P (Sn/Ag/Cu)

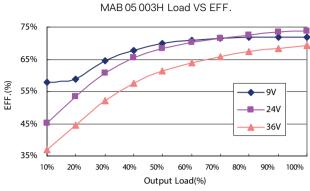
2. Ramp up rate during preheat: 1.71°C/Sec (From 30°C to 150°C)
3. Soaking temperature: 0.31°C/Sec (From 150°C to 200°C), 160±10 seconds

4. Ramp up rate during reflow: 0.96°C/Sec (From 217°C to 260°C)

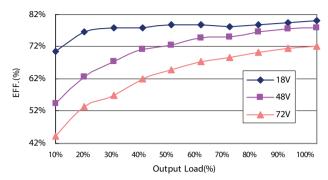

5. Peak temperature: 260°C, above 217°C 90 Seconds

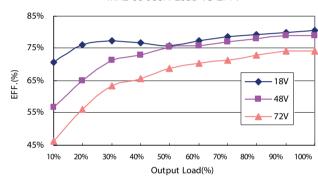
6. Ramp up rate during cooling: -1.2°C/Sec (From 260°Cto 160°C) Figure 3 Recommended PCB Layout Footprints and Wave Soldering Profiles for DIP-24 and SMD packages

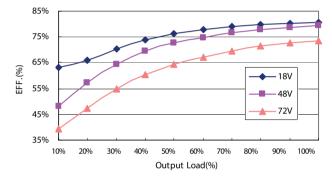

6.2 Power De-Rating Curves

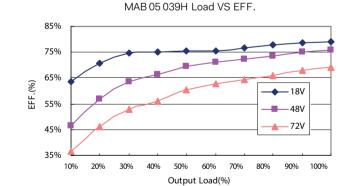

Operating Ambient temperature Range: -25°C \sim 71°C with de-rating above 71°C.

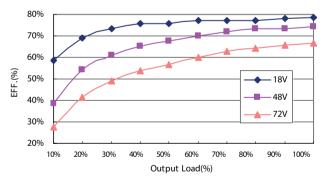
Maximum case temperature under any operating condition should not exceed 95°C (Plastic Case), 100°C (Copper Case).



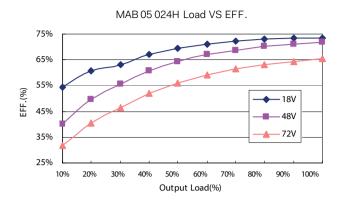

6.3 Efficiency VS. Load




MAB 05 030H Load VS EFF.



MAB 05 036H Load VS EFF.



MAB 05 042H Load VS EFF.

6.4 Input Capacitance at the Power Module

The converters must be connected to low AC source impedance. To avoid problems with loop stability source inductance should be low. Also, the input capacitors (Cin) should be placed close to the converter input pins to de-couple distribution inductance. However, the external input capacitors are chosen for suitable ripple handling capability. Low ESR capacitors are good choice. Circuit as shown in Figure 4 represents typical measurement methods for reflected ripple current. C1 and L1 simulate a typical DC source impedance. The input reflected-ripple current is measured by current probe to oscilloscope with a simulated source Inductance (L1).

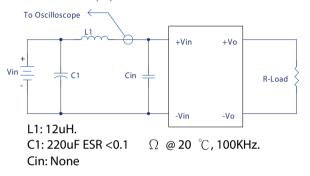


Figure 4 Input Reflected-Ripple Test Setup

6.5 Test Set-Up

The basic test set-up to measure parameters such as efficiency and load regulation is shown in Figure 5. When testing the modules under any transient conditions please ensure that the transient response of the source is sufficient to power the equipment under test. We can calculate the

· Efficiency

· Load regulation and line regulation. The value of efficiency is defined as:

$$\eta = \frac{Vo \times Io}{Vin \times Iin} \times 100\%$$

Where:

 V_o is output voltage, I_o is output current, V_{in} is input voltage, I_{in} is input current.

The value of load regulation is defined as:

$$Load.reg = \frac{V_{FL} - V_{NL}}{V_{NL}} \times 100\%$$

Where:

 $\label{eq:VFL} V_{FL} \mbox{ is the output voltage at full load} \\ V_{NL} \mbox{ is the output voltage at 10\% load (Single output)} \\ VNL \mbox{ is the output voltage at 25\% load (Dual output)} \\ \end{cases}$

The value of line regulation is defined as:

$$Line.reg = \frac{V_{HL} - V_{LL}}{V_{LL}} \times 100\%$$

Where: V_{HL} is the output voltage of maximum input voltage at full load. V₁₁ is the output voltage of minimum input voltage at full load.

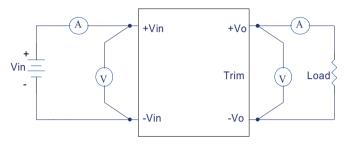
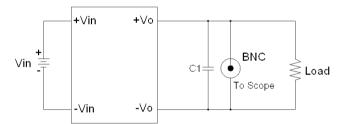
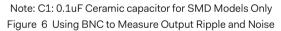




Figure 5 Test Setup

6.6 Output Ripple and Noise Measurement

The test set-up for noise and ripple measurements is shown in Figure 6 and 7. A coaxial cable was used to prevent impedance mismatch reflections disturbing the noise readings at higher frequencies. Measurements are taken with output appropriately loaded and all ripple/ noise specifications are from 5Hz to 20MHz Band Width.

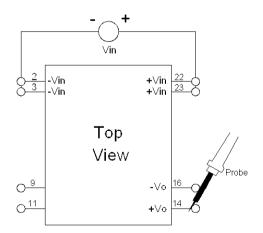
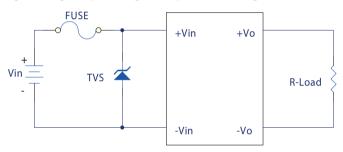


Figure 7 Using Probe to Measure Output Ripple and Noise


6.7 Output Capacitance

The MAB05 series converters provide unconditional stability with or without external capacitors. For good transient response low ESR output capacitors should be located close to the point of load. These series converters are designed to work with load capacitance to see technical specifications.

7. Safety & EMC

7.1 Input Fusing and Safety Considerations

The MAB05 series converters have not an internal fuse. However, to achieve maximum safety and system protection, always use an input line fuse. We recommended a active fast fuse 0.63A for 24Vin models and 0.3A for 48Vin models. Figure 8 circuit is recommended by a transient voltage suppressor diode across the input terminal to protect the unit against surge or spike voltage and input reverse voltage.

Figure 8 Input Protection

7.2 EMC Considerations

EMI Test standard: EN55022 Class A

Test Condition: Input Voltage: Nominal, Output Load: Full Load

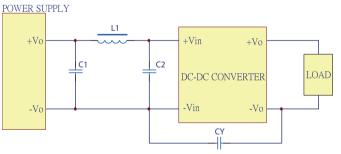
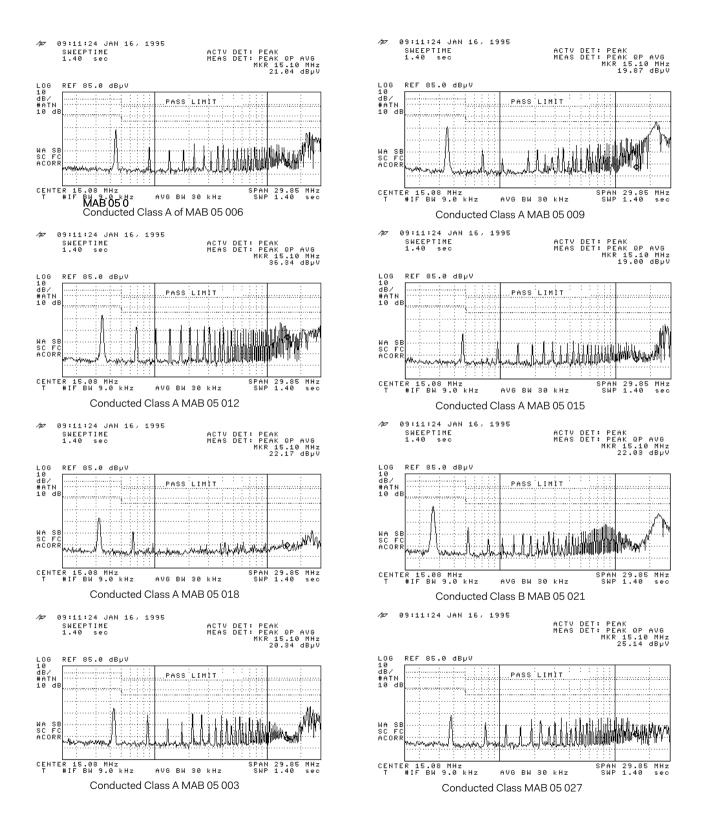
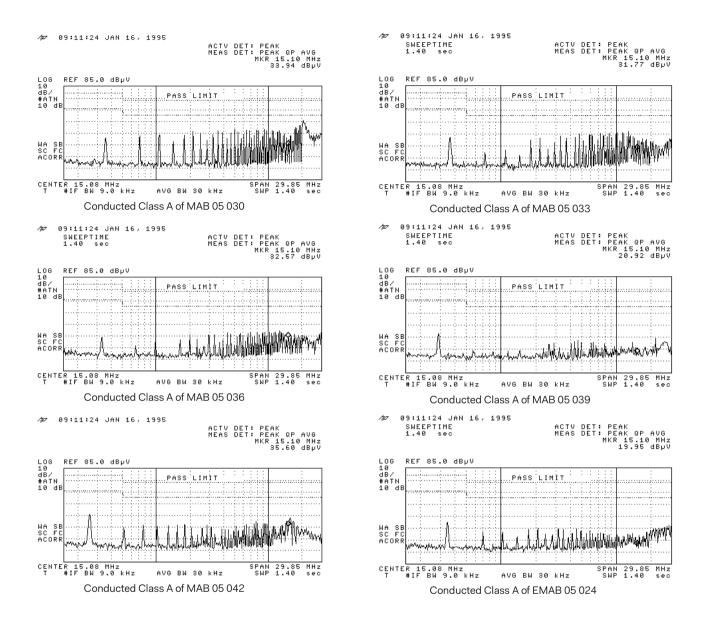
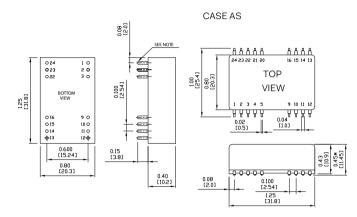




Figure 9 Connection circuit for conducted EMI testing

Model No.	C1	C2	L1	СҮ
MAB 05 006	NC	47uF/50V	Short	NC
MAD 05 000	NC	470F750V ESR<0.17Ω	Short	NC
MAB 05 009	NC	47uF/50V	Short	NC
MAD 05 009	NC	470F750V ESR<0.17Ω	Short	NC
MAB 05 012	NC	47uF/50V	Short	NC
MAB 05 012	NC		Short	NC
	NO	ESR<0.17Ω		NO
MAB 05 015	NC	47uF/50V	Short	NC
		ESR<0.17Ω		
MAB 05 018	NC	47uF/50V	Short	NC
		ESR<0.17Ω		
MAB 05 021	NC	47uF/50V	Short	NC
		ESR<0.17Ω		
MAB 05 003	NC	47uF/50V	Short	NC
		ESR<0.17Ω		
MAB 05 027	NC 4	7uF/100V	Short	NC
		ESR<0.17Ω		
MAB 05 030	NC	7uF/100V	Short	NC
		ESR<0.17Ω		
MAB 05 033	NC	47uF/100V	Short	NC
		ESR<0.17Ω		
MAB 05 036	NC	47uF/100V	Short	NC
		ESR<0.17Ω		
MAB 05 039	NC	47uF/100V	Short	NC
		ESR<0.17Ω		
MAB 05 042	NC	47uF/100V	Short	NC
		ESR<0.17Ω		
MAB 05 024	NC	47uF/100V	Short	NC
		ESR<0.17Ω		

Note: The C2 is KY series aluminum capacitors.



8. Mechanical Specifications

8.1 Mechanical Outline Diagrams

NOTE:Pin Size is 0.02 ±0.002 lnch (0.5±0.05 mm)DIA All Dimensions In Inches (mm) Tolerances Inches: X.XX= ±0.02 , X.XXX= ±0.010 Millimeters: X.X= ±0.5 , X.XX=±0.25

PIN CONNECTION									
				PINCC	INNECT				
		500 VD	C			1.	5K & 3K \	/DC	
Pin	Single	Output	Dual	Output	Output Pin		Output	Dual	Output
	DIP	SMD	DIP	SMD		DIP	SMD	DIP	SMD
1,24	+V li	nput	+V I	nput	1,24	NP	NC	NP	NC
2,23	N	с	-V Output		2,3	-V Input		-V I	nput
3,22	N	с	Cor	nmon	4,5	NP NC		NP	NC
4	NP	NC	NP	NC	9	NC		Common	
5	NP	NC	NP	NC	10,15	NC		NC	
9	NP	NC	NP	NC	11	NC -V OL		Dutput	
10,15	-V C	output	Cor	nmon	12,13	NP	NC	NP	NC
11,14	+V Output		+V C	+V Output		+V Output		+V C	Output
12,13	-V Ir	nput	-V I	nput	16	-V Output		Cor	nmon
16	NP	NC	NP	NC	20,21	NP	NC	NP	NC
20,21	NP	NC	NP	NC	22,23	+V Input		+V li	nput

* NP-NO PIN * NC-NO CONNECTION WITH PIN