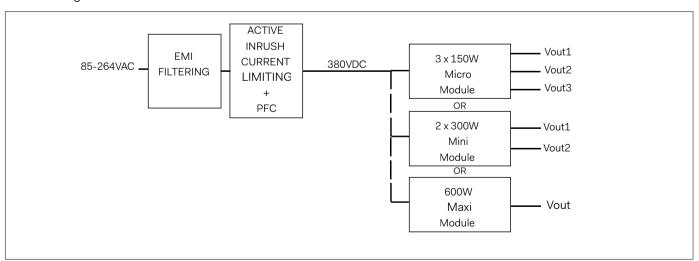


Table of Contents

1. Introduction	P1
2. Features	P1
3. Block diagram	P2
4. Options description	P3
5. Input	P3
6. Output	P4
7. Auxiliary functions	P5
8. Electromagnetic	P6
9. Mechanical	P8
10. Connector pin allocation	P11
11. Safety and installation	P12
12. Options and configuration	P13


1. Introduction

The DBB, very compact and low profile 600W AC/DC power supply in chassis format, incorporates input filtering, input and output protections, very robust mechanical mounting and connection, conformal coating and MIL-STD options required in most of the severe environments for industrial, defense applications. The PSU provides high reliability, high efficiency, input-to-output isolation, soft start and active very low inrush circuit, overtemperature protection, input over/undervoltage lockout. The PSU is configurable with 1 to 3 outputs in many output $\,$ voltages from 3V3 to 48VDC, other outputs are even possible as semistandard versions, they are countinuously short-circuit proof. The 100°C baseplate allows operation in high temperature environment.

2. Features

85-264VAC input voltage range, PFC
1-3 isolated outputs
200*127*40mm very low profile
Industrial or ruggedized versions
Active very low inrush current
Many output configurations available
Conduction cooled 100°C baseplate
Safety IEC/EN 60950-1
RoHS lead-free-solder compliant

3. Block Diagram

4. Options Description

MIL-STD ruggedized (-M)

Meet MIL-STD 461E CE102, MIL-STD 1399-300A, MIL-STD810F shock & vibrations. No laboratory certification.

-40°C operation (-T)

The thermal grade of the DC/DC converters used and other components are changed to comply with low ambient temperature.

Conformal coating (-V)

During manufacturing process, when V option is specified, components and pcb are covered with an acrylic coating to address high level of ambiant humidity application.

Heatsink (-H, -H1)

-H: a 15 mm heatsink is mounted on the baseplate with longitudinal fins

-H1: a 15 mm heatsink is mounted on the baseplate with transversal fins.

Thermal impedance of -H and -H1 heat sinks are 1,28°C/W in free air convection and 0,4°C/W in 2 m/s air flow.

IP-enclosure (-IP)

IP65 sealed enclosure.

5. Input

Operating input voltage

85-264VAC. 100-350VDC.

Frequency

44Hz min, 50Hz typ, 440Hz max.

Power factor

0.96 typ, 0.98 max, 230VAC, 50Hz, Pnom.

Input current

16A at Vin min.

No-load input power

15W at Vin typ.

Peak inrush current

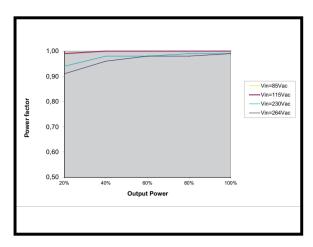
4A typ, 10A max at Vin max.

Start-up time

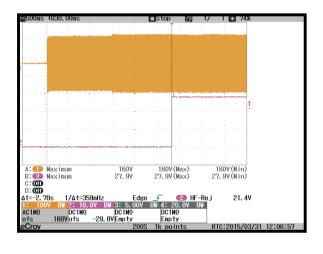
2s typ, 5s max.

Input fuse

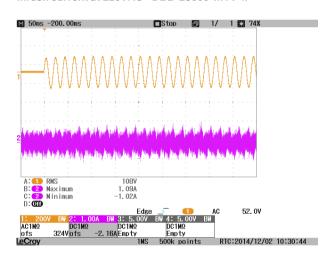
A fuse mounted inside the psu protects against damages in case of a failure. The fuse is not user-accessible without opening the unit. In DC mode, reverse polarity at the input is protected and will not cause the fuse to blow.

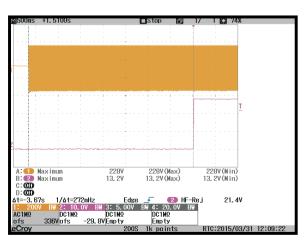

Fuse type

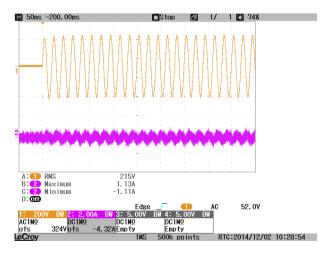
Littelfuse, 10A, 0451010.MRL.


Transient protection

A VDR (Voltage Dependent Resistor) and a common mode input filter form an effective protection against input transients in severe environments.


Power factor curve - DBB-28600-MTV-IP


Establisment time curve 115VAC 50Hz - DBB-28600-MTV-IP


Inrush current at 115VAC - DBB-28600-MTV-IP

Establisment time curve 230VAC 50Hz - DBB-28600-MTV-IP

Inrush current at 230VAC - DBB-28600-MTV-IP

6. Output

Output			3V3			5V			12V			15V			24V			28V			48V		
Characteristics	Conditions	min	typ	max	min	typ	max	min	typ	max	min	typ	max	min	typ	max	min	typ	max	min	typ	max	Unit
Output voltage			3V3			5			12			15			24			28			48		V
Trim range	Factory set	3		3.6	4.5		5.5	10.8		13.2	13.5		16.5	21.6		26.2	25.2		30.8	43.2		51.8	V
Overvoltage protection				4.5			6.5			14.9			18.5			29.1			34			58	V
Output noise	20Mhz		100			100			150			150			150			150			200		mVpp
Efficiencyf			75			83			85			84			85			83			84		%
Load regulation	Vin nom			1			1			0.5			0.5			0.4			0.4			0.4	%
M board		inclu	udes 1	1 M m	odul	e belo	ow																
Output current		0		80	0		80	0		50	0		40	0		25	0		21.5	0		12.5	А
Max power				264			400			600			600			600			600			600	W
Output current limit			92	104		92	108		57.5	67.5		46	56		29	39		24	29		14	17	Α
m board		inclu	ıdes ı	up to	2 m n	nodul	es be	low															
Output current		0		45	0		40	0		25	0		20	0		12.5	0		10.7	0		6.25	Α
Max power				150			200			300			300			300			300			300	W
Output current limit			54	64		46	52		29	35		23	26		14.5	17		12.5	14.5		7.2	8.2	А
μ board		inclu	ıdes ı	up to	3 µ m	odule	es bel	ow															
Output current		0		22.7	0		20	0		12.5	0		10	0		6.25	0		5.3	0		3.1	А
Max power				75			100			150			150			150			150			150	W
Output current limit			25	31		23	26		14.5	17		11	14		7.2	8.2		6.2	7		3.6	4.4	А

See "options and configurations" section for all the power possibilities.

General conditions: 25°C ambient. For each output voltage max. power configuration.

Parallel operation

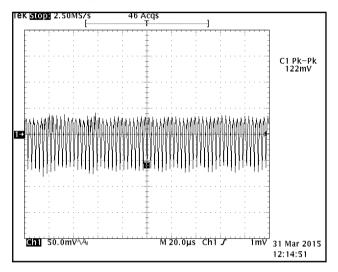
Parrallel operation is possible in the same unit or between different units for m-boards, M-boards and dual M-board with active current sharing through the PR signal. The outputs put in parallel MUST be exactly the same, all OUT+ connected together and all OUT- connected together when PR are linked (risk of damage otherwise).

Redundant systems operation

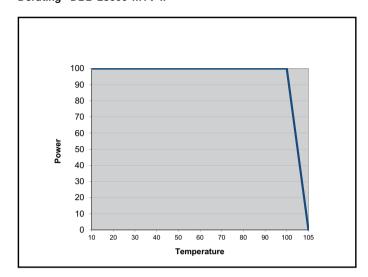
When systems require a very high level of reliability and should work normally in the event of a failure, N+1 redundancy is implemented where N is the number of converter to support power requirement. If one converter fails, the remaining ones still delivers the power to the loads. Redundant operation requires external oring diodes.

Hold-up time

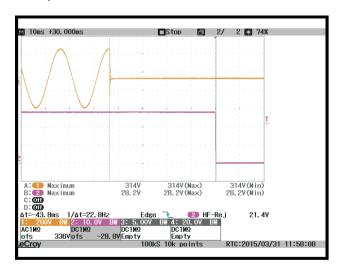
The psu provides internal hold-up time (see curve).

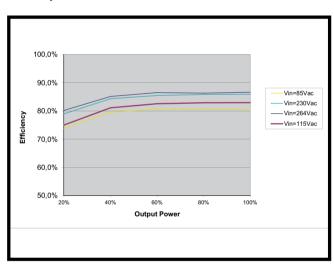

Output current limitation

All outputs are continously protected against short-circuit by a constant current limitation (no foldback) with automatic recovery. See Table 6 for values.


Overvoltage protection

An OVP is incorporated on each output. All outputs are cut if an OVP is detected. This protection is latch style (Recovery after AC reset or inhibit).


Waveforms output noise - DBB-28600-MTV-IP


Derating - DBB-28600-MTV-IP

Hold up time - DBB-28600-MTV-IP

Efficiency curve - DBB-28600-MTV-IP

7. Auxiliary Functions

Remote on/off (INHIB)

An isolated INHIB signal disables corresponding output voltage when connected to RTN. Outputs inhibited: INH level LOW.

Output voltage adjustment (ADJ)

Output can be ajusted 90-110 % Vnom. with the potentiometer at the output side or by an external voltage 0,6 to 1,25V max. referred to RTN.

Remote sense (+S-S)

This feature enables compensation of voltage drop across the connector contacts and the load lines. Remote Sense, max 0,5V per line compensation (If local sense, connect locally S+ to OUT+ and S- to OUT- of the corresponding output).

Output type Total drop Positive line drop

V1, V2 <0.5V <0.25V

Power good & LED (Pgood+ Pgood-)

Collector isolated optocoupled signal referred to RTN, closed when all outputs voltages are OK. Led is also available for each output.

Auxiliary bias voltage (+5VAUX)

Auxiliary supply limited to 200mA. Referred to RTN.

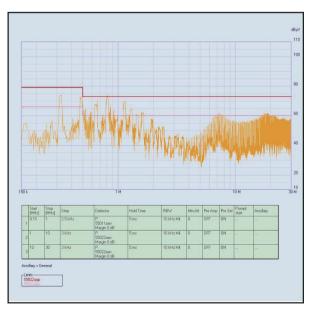
Paralleling signal (PR)

Parallel only identical outputs (voltage and power). Outputs in parallel will current share when their corresponding PR are connected together. When outputs are coming from different boards, RTN have to be connected together.

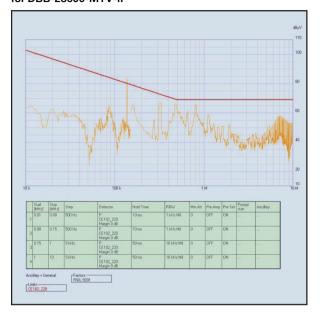
8. Electromagnetic

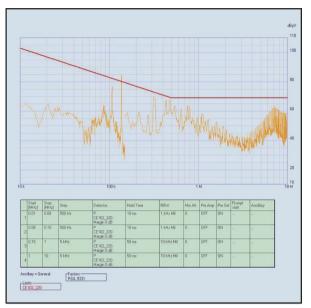
Immunity		Standard		Level	Value	Waveform	Source imped.	Test procedure	Mode Cr	iteria
Surges	Built to meet	EN61000-4-5	DM	3	1kV	1,2/50µs	12 ohms		OP	В
			CM		2kV	1,2/50μs	12 ohms		OP	Α
Electrostatic discharge	Built to meet	EN61000-4-2		4	8kV	1/50µs	330 ohms	10 pos, 10 neg	OP	В
Fast transients/burst	Built to meet	EN61000-4-4		4	4kV	5/50µs	50 ohms		OP	В

Note: Built to meet EN 61000-4, -3, -11, Harmonics EN 61000-3-2, Flickers EN 61000-3-3.


Emissions

Depending to the configurations, EMI-results could change. Add an external filter to comply to EN55022A and MIL-STD461E CE102.


According to EN55022A IN 230VAC OUT 600W Neutral for DBB-28600-MTV-IP


According to EN55022A IN 230VAC OUT 600W Phase for DBB-28600-MTV-IP

According to MIL-STD461E CE102 - 220V 600W Neutral for DBB-28600-MTV-IP

According to MIL-STD461E CE102 - 220V 600W Phase for DBB-28600-MTV-IP

9. Environmental

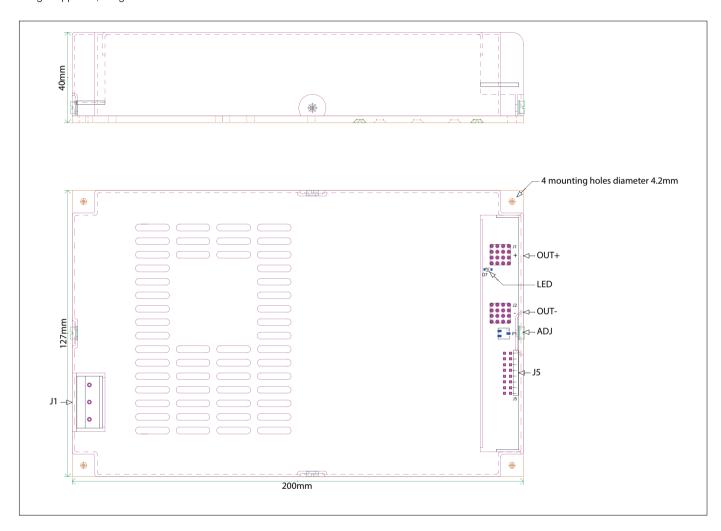
Thermal considerations

When a converter is mounted in conduction cooled, the temperature measured on the baseplate should not exeed 100°C. When heatsink option is used in convection cooling and is operating at its nominal output power at the max. ambiant temperature, the temperature measured on the heatsink should not exceed 100°C.

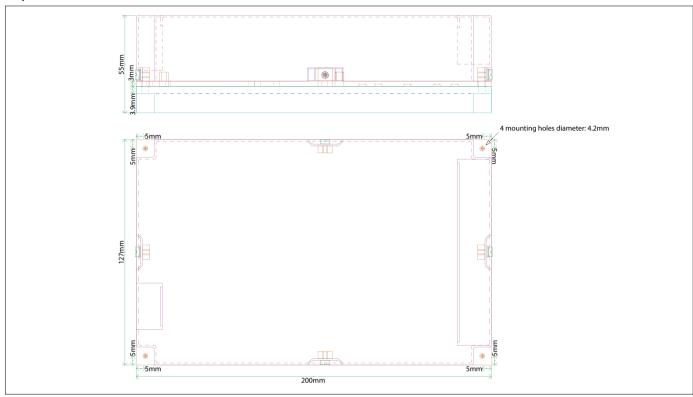
Thermal protection

A temperature protection (OTP) is integrated in each output module, disabling output when baseplate temperature exceeds 105°C (+/-5°C). The converter automatically restarts, when the temperature drops below 70°C . Nevertheless, exceeding the max operating temperature may cause failures of the converter.

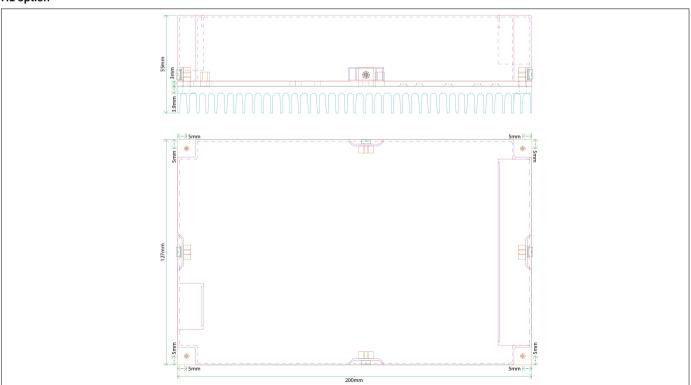
Temperature		Standard	d		T option			
Conditions		Min	Тур	Max	Min	Тур	Max	Unit
Ambient	Operating (see derating)	-20		+71	-40		+71	°C
Heatsink		-20		+100	-40		+100	°C
Storage	Not operating	-40		+125	-40		+125	°C

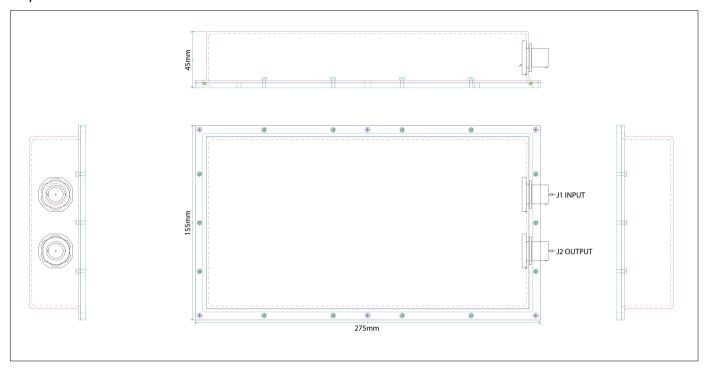

In operation, there is no power derating as long as the baseplate temperature is in the below indacated range.

Immunity to Environmental Conditions

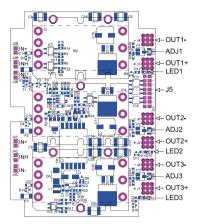

Test Method	Standard	Test Conditions	Status
Damp heat	MIL STD 810F Proc. 507.4	Humidity 93%, 40°C, 56 days	Option (-V), built to meet
Shock	MIL STD 810F Proc. 516.5	20g/18ms half size, 5g/30ms	Option (-M), built to meet
Vibration	MIL STD 810F Proc. 514.5	4-80Hz (2,8m/s ²)/2Hz, non operating 160-500Hz, (0,175m/s ²) ² /Hz, non opera	Option (-M), built to meet ting

10. Mechanical


Size: 200 x 127 x 40 mm. Aluminum Natural. Weight Approx 1,02 kg.


H option

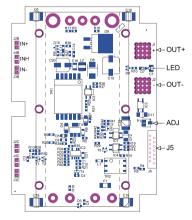
H1 option



IP option



11. Connector Pin Allocation


Description	Pin	Connector
Input screw ty	pe connector C	MKDS 3/3-7.62
1	J1-1	Earth
2	J1-2	Neutral AC/N
3	J1-3	Line AC/L
Output M-boa	rd power conn	ectors
OUT+	J1	Würth Press-Fit M4 Ref : 7461095
OUT-	J2	Würth Press-Fit M4 Ref : 7461095
Output m-boa	rd power conn	ectors
OUT1+	J1	Würth Press-Fit M3 Ref: 7461093
OUT1-	J2	Würth Press-Fit M3 Ref: 7461093
OUT2+	J3	Würth Press-Fit M3 Ref: 7461093
OUT2-	J4	Würth Press-Fit M3 Ref : 7461093
Output µ-boar	rd power conne	ctor 6 Pins Male
OUT1+	J1-1	Würth Press-Fit M3 Ref: 7461093
OUT1-	J1-2	Würth Press-Fit M3 Ref: 7461093
OUT2+	J1-3	Würth Press-Fit M3 Ref: 7461093
OUT2-	J1-4	Würth Press-Fit M3 Ref: 7461093
OUT3+	J1-6	Würth Press-Fit M3 Ref: 7461093
OUT3-	J1-7	Würth Press-Fit M3 Ref: 7461093
Signals Wurth	690368191472	Female 2*7 pins
μ-board	m-board	M-board
J5-1: ACFAIL	J5-1 : ACFAIL	J5-1: ACFAIL
J5-2: PGOOD	J5-2:PGOOD	J5-2:PGOOD
J5-3:RTN	J5-3: RTN	J5-3:RTN
J5-4: INHIB	J5-4 : INHIB	J5-4 : NC
J5-5:+5VAUX	J5-5:+5VAUX	J5-5: +5VAUX
J5-6:S1+	J5-6:S1+	J5-6: NC
J5-7 : S1-	J5-7 : S1-	J5-7: NC
J5-8 : ADJ1	J5-8 : ADJ1	J5-8: NC
J5-9 : NC	J5-9: PR1	J5-9: PR1
J5-10:NC	J5-10 : NC	J5-10:NC
J5-11: ADJ2	J5-11 : PR2	J5-11 : INHIB
J5-12 : S2+	J5-12: S2+	J5-12:S1+
J5-13 : S2-	J5-13 : S2-	J5-13:S1-
J5-14 : ADJ3	J5-14 : ADJ2	J5-14 : ADJ1

DBB μ-board

DBB m-board

DBB M-board

12. Safety and Installation

These converters are components, intended exclusively for integration into other equipment by an industrial assembly process or by a professionally competent person. Installation must strictly follow the safety regulations in respect of the enclosure, mounting, creepage and clearance distances, markings of the end-use application. Connection to the system shall be made via the Würth press-fit connectors. The AC/L is internally fused. This fuse is designed to protect the converter against overcurrent caused by a failure, but may not be able to satisfy all requirements. External fuses in the wiring circuit to one or both input pins may be necessary to ensure compliance with local requirements. Do not open the PSU, or the warranty will be invalidated. Make sure that there is sufficient thermal baseplate dissipation (max. temperature: 100°C). This should be verified by measuring the case of temperature at the specified measuring point, when the converter is operated in the end-use application.

Standards and Approvals

The converters are built to meet the safety standards IEC 60950-1, EN 60950-1. 'Built to meet' mentioned in the different paragraphs of the datasheet means that Powerbox has designed the product to meet the standard but not certified it in a laboratory. 'Qualified' means that the test has been made in a certified laboratory.

Cleaning Agents and Process

The converters are not hermetically sealed. In order to avoid possible damage, any penetration of liquids shall be avoided.

Isolation

The electric strength test is performed in the factory in accordance with IEC/EN 60950.

Electric Strength

Characteristic		Input to Earth	Input to Output	Output to Earth	Output to Output	Unit
Electric strength	Design strength	1500	3000	500		Vrms
	Factory test for production	2000	2000	500		Vdc
Insulation resistance	9			> 100	>100	Mohms

Reliability

MIL-HFBK-217F, notice 2	Model	Heatsink Temp	GB	GF
MTBF (Hours)	DBB	40°C	285000	16500
		70°C	139000	82300
		100°C	86600	51000

MTBF-calculation for a specific part number has to be ordered.

12. Options and Configuration

Input Stage DBB	Posi	Position A							
Vin	1	2	3	For μ-board					
	1	2		For m-board					
	1			For M-board					

DBB - OUT1	OUT2	OUT3	- *)
μ	μ	μ	
m	m		
М			
m	m		
М			

*)Options

H: Heatsink longitunal finsH1: Heatsink transversal fins

IP: IP65 enclosureM: RuggedizedT: -40°C

V: Conformal coating

 $\pmb{\mu} \textbf{-} \pmb{\mu} \textbf{-} \pmb{\mu} \text{-} \mu \text{-board}$ out1, out2, out3 : Up to 3 outputs with $\mu \text{-modules}$ from 2V to 48VDC 150W.

μ		μ		μ		
٧	W	V	W	V	W	
N	N	N	N	N	N	
2	50	2	50	2	50	
3V3	50, 75	3V3	50, 75	3V3	50, 75	
5	50, 100	5	50, 100	5	50, 100	
8	100	8	100	8	100	
12	75, 150	12	75, 150	12	75, 150	
15	75, 150	15	75, 150	15	75, 150	
24	75, 150	24	75, 150	24	75, 150	
28	75, 150	128	75, 150	28	75, 150	
36	75, 150	36	75, 150	36	75, 150	
48	75, 150	48	75, 150	48	75, 150	

m-m: m-board out1, out2: Up to 2 outputs with m-modules from 2V to 48VDC 300W.

m		m	
٧	W	V	W
N	N	Ν	N
2	100	2	100
3V3	100, 150	3V3	100-150
5	150, 200	5	150, 200
8	200	8	200
12	200, 300	12	200, 300
15	200, 300	15	200, 300
24	200, 300	24	200, 300
28	200, 300	28	200, 300
36	200, 300	36	200, 300
48	200, 300	48	200, 300

M: M-board: 1 output with M-module from 2V to 54VDC 600W.

М		
V	W	
N	N	
2	160	
3V3	200, 264	
5	300, 400	
8	300, 400	
12	400, 600	
15	400, 600	
24	400, 600	
28	400, 600	
32	600	
36	400, 500, 600	
48	400, 600	
 54	600	

Empty slots are filled with "NN"

Example:

 ${\tt DBB-48150-48150-M} \ ({\tt 1\ microboard\ with\ 3\ outputs\ of\ 48V\ 150W\ with\ MIL-STD\ option}).$

 $\label{eq:decomposition} \mbox{DBB-3V375-5100-12150 (1 microboard with 3 different outputs)}.$

www.prbx.com 2020.02.25 ₁₃