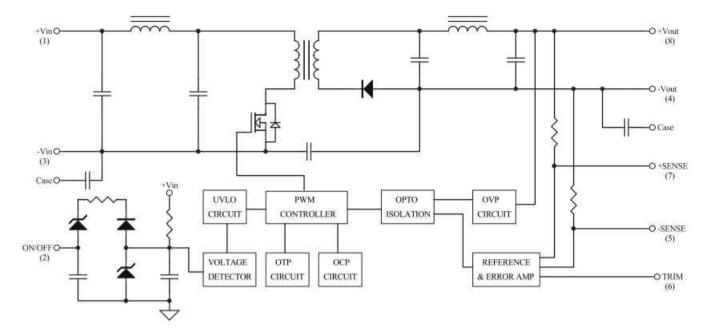

P R B X

Table of Contents

Table of Contents	
1. Introduction	P1
2. DC/DC converter features	P1
3. Electrical block diagram	P2
4. Technical specification	P3
5. Main features and functions	P7
5.1 Operating temperature range	P7
5.2 Output voltage adjustment	P7
5.3 Over current protection	P7
5.4 Output over voltage protection	P7
5.5 Remote On/Off	P7
5.6 UVLO (under voltage lock out)	P7
5.7 Over temperature protection	P8
6. Applications	P8
6.1 Recommended layout, PCB footprint and soldering information	P8
6.2 Connection for standard use	P8
6.3 Input capacitance at the power module	P9
6.4 Convection requirements for cooling	P9
6.5 Thermal considerations	P9
6.6 Power de-rating	P9
6.7 Quarter brick heat sinks	P11
6.8 Efficiency VS load	P12
6.9 Efficiency VS Vin	P13
6.10 Test set-up	P14
6.11 Output voltage adjustment	P14
6.12 Output remote sensing	P16
6.13 Output ripple and noise	P16
6.14 Output capacitance	P17
6.15 Remote on/off circuit	P17
6.16 Series operation	P17
6.17 Parallel/redundant operation	P18
6.18 Hold up time	P18
7. Safety & EMC	P19
7.1 Input fusing and safety considerations	P19
7.2 EMC considerations	P19
7.3 Suggested configuration for RIA12 surge test	P24
8. Mechanical specifications	P25
8.1 Mechanical outline diagrams	P25

POWERBOX Industrial Line PQB50U-72S Series 30-50W 12:1 Single Output DC/DC Converter Manual V11


1. Introduction

The PQB50U-72S series of DC-DC converters offers 30- 50 watts of output power @ single output voltages of 5, 12, 24, 48VDC with industry standard quarter-brick. It has a wide (12:1) input voltage range of 14 to 160VDC (72VDC nominal) and 3000VDC basic isolation. Compliant with EN50155, EN45545, EN50121-3-2. High efficiency up to 89%, allowing case operating temperature range of -40°C to 100°C. An optional heat sink is available to extend the full power range of the unit. Very low no load power consumption (5mA), an ideal solution for energy critical systems. The standard control functions include remote on/off (positive or negative) and +10%, -20% adjustable output voltage. Fully protected against input UVLO (under voltage lock out), output overcurrent, output over-voltage and over- temperature and continuous short circuit conditions. PQB50U-72S series is designed primarily for common railway applications of 24V, 36V, 48V, 72V, 96V, 110V nominal voltage and also suitable for distributed power architectures, telecommunications, battery operated equipment and industrial applications.

2. DC/DC Converter Features

30-50W isolated output
Efficiency to 89%
Fixed switching frequency
12:1 input range
Regulated outputs
Remote On/Off
Low no load power consumption
Over temperature protection
Over voltage/current protection
Continuous short circuit protection
Quarter brick size meet industrial standard
UL60950-1 2nd (Basic Insulation) approval
CB Test Certificate IEC60950-1
Meet EN50155 with external circuits
Shock & vibration meet EN 50155 (EN 61373)
Fire & smoke meet EN45545-2
5000m operating altitude

3. Electrical Block Diagram

Electrical Block Diagram

4. Technical Specifications (All specifications are typical at nominal input, full load at 25°C unless otherwise noted.)

Absolute Maximum Ratings

Parameters	Notes and Conditions	Device	Min	Typical	Max	Units
Input voltage						
Continuous		All	0.3		160	VDC
Transient	100ms	All			200	VDC
Operating case temperature		All	-40		+100	°C
Storage temperature		All	-55		+125	°C
Isolation voltage, 1 minute	Input/output	All			3000	VDC
	Input/case	All			2500	VDC
	Output/case	All			500	VAC

Input Characteristics

Parameters	Notes and Conditions	Device	Min	Typical	Max	Units
Operating input voltage		All	14	72	160	VDC
Input Under Voltage Lockout						
Turn-on voltage threshold		All	14.2	14.6	15	VDC
Turn-off voltage threshold		All	11.6	12.0	12.4	VDC
Lockout hysteresis voltage		All		2.6		VDC
Maximum input current	100% Load, Vin=14V	All		4.6		А
No-load input current		72S05		5		mA
		72S12		5		mA
		72S24		5		mA
		72S48		8		mA
Input filter	Pifilter	All				
Inrush current (I ² t)	As per ETS300 132-2	All			0.1	A ² s
Input reflected ripple current	P-P thru 12uH inductor, 5Hz to 20Mhz,	All		30		mA
	see 6.3					

Output Characteristics

Parameters	Notes and Conditions	Device	Min	Typical	Max	Units
Output voltage set point	Vin=Nominal Vin, Io = Io_max, Tc=25°C	Vo=5.0 VDC	4.95	5	5.05	VDC
		Vo=12 VDC	11.88	12	12.12	VDC
		Vo=24 VDC	23.76	24	24.24	VDC
		Vo=48 VDC	47.52	48	48.48	VDC
Output voltage regulation						
Load regulation	lo=lo_min to lo_max	All			±0.2	%
Line regulation	Vin=low line to high line	All			±0.2	%
Temperature coefficient	TC=-40°C to +100°C	All			±0.02	%/°C
Output voltage ripple and noise 5	5Hz to 20Mhz bandwidth					
Peak-to-Peak	Full load, 22uF aluminum solid capacitor	All			100	mV
	and 1.0uF ceramic capacitors, see 6.13					
RMS	Full load, 22uF aluminum solid capacitor	All			40	mV
	and 1.0uF ceramic capacitors, see 6.13					
Operating output current range		Vo=5.0 V	0		6	А
		Vo=12 V	0		4.2	А
		Vo=24 V	0		2.1	А
		Vo=48 V	0		1.05	А
Output DC current limit inception	Hiccup mode, auto recovery, see 5.3	All	110	180	220	%
Maximum output capacitance	Full load (resistive)	Vo=5.0 V	0		10000	μF
		Vo=12 V	0		6800	μF
		Vo=24 V	0		3300	μF
		Vo=48 V	0		680	μF
Output voltage trim range	Pout=max rated power, see 6.11	All	-20		+10	%
Output over voltage protection	Limited voltage, see 5.4	All	115	125	140	%

Dynamic Characteristics

Parameters	Notes and Conditions	Device	Min	Typical	Max	Units
Output voltage current transient						
Error band	75% to 100% of Io_max step load change	All			±5	%
Recovery time	di/dt=0.1A/us (within 1% Vout nominal)	All			250	us
Turn-on delay and rise time	Full load (constant resistive load)					
Turn-on delay time,	Von/off to 10%Vo_set	All		15		ms
from on/off control						
Turn-on delay time, from input	Vin_min to 10%Vo_set	All		15		ms
Output voltage rise time	10%Vo_set to 90%Vo_set	All		10		ms
Efficiency						
Parameters	Notes and Conditions	Device	Min	Typical	Max	Units
100% load	Vin=72V, see 6.8	Vo=5.0 V		83		%
		Vo=12 V		87		%
		Vo=24 V		89		%
		Vo=48 V		88		%
	Vin=110V, see 6.8	Vo=5.0 V		81		%
		Vo=12 V		86		%
		Vo=24 V		87		%
		Vo=48 V		85		%

B		D :		- · ·		
Parameters	Notes and Conditions	Device	Min	Typical	Max	Units
Isolation voltage, 1 minute	Input/output	All			3000	VDC
	Input/case	All			2500	VDC
	Output/case	All			500	VAC
Isolation resistance	Input/output	All	100			MΩ
Isolation capacitance	Input/output	All		1000		pF
	Input/case	All		1500		pF
	Output/case	All		10000		pF

Feature Characteristics

Parameters	Notes and Conditions	Device	Min	Typical	Max	Units
Switching frequency	Pulse wide modulation (PWM), fixed	All	215	240	265	KHz
ON/OFF control, positive remo	te On/Off logic Refer to -Vin pin					
Logic low (module off)	Von/off at lon/off=1.0mA	All	0		1.2	V
Logic high (module on)	Von/off at lon/off=0.0uA	All	3.5 or ope	n circuit	160	V
ON/OFF control, negative remo	ote On/Off logic Refer to -Vin pin					
Logic low (module off)	Von/off at Ion/off=0.0uA	All	4.0 or ope	n circuit	160	V
Logic high (module on)	Von/off at lon/off=1.0mA	All	0		1.2	V
ON/OFF current	lon/off at Von/off=0.0V	All		0.4	1	mA
(for both remote on/off logic)						
Leakage current	Logic high, Von/off=15V	All			30	uA
(for both remote on/off logic)						
Off converter input current	Shutdown input idle current	All		3	5	mA
Over temperature shutdown	Aluminum baseplate temperature	All		110		°C
Over temperature recover	Aluminum baseplate temperature	All		100		°C
General Specifications						
Parameters	Notes and Conditions	Device	Min	Typical	Max	Units

Parameters	Notes and Conditions	Device	Min	Typical	Max	Units
MTBF	lo=100% of lo, max:	All		780		Khours
	Ta=25°C per MIL-HDBK-217F					
Weight		All		61.5		grams
Case material	Plastic, DAP					
Baseplate material	Aluminum					
Potting material	UL 94V-0					
Pin material	Base: Copper					
	Plating: nickel with matte tin					
Shock/Vibration	MIL-STD-810F, EN61373					
Humidity	95% RH max. Non condensing					
Altitude	5000m operating altitude, 12000m trar	nsport altitude				
Thermal shock	MIL-STD-810F					
EMI	Meets EN55011, EN55022 & EN50155	with external	input filter, see	7.2 EN55032	Class A	
ESD	EN61000-4-2	Level 3: Air	±8kV, Contact	±6kV	Perf. Criteria	AΑ
Radiated immunity	EN61000-4-3	Level 3: 80~	-1000MHz, 20	V/m	Perf. Criteria	AΑ
Fast Transient	EN61000-4-4	Level 3: On	power input po	ort, ±2kV,		
		external inp	ut capacitor re	quired, see 7.1	Perf. Criteria	Α
Surge	EN61000-4-5	Level 4: Line	e to earth, ±4k\	/, Line to line, ±2kV	Perf. Criteria	AΑ
Conducted immunity	EN61000-4-6	Level 3: 0.1	5~80MHz, 10V	1	Perf. Criteria	Α
Interruptions of voltage supply	EN50155	Class S2: 10	Oms Interruptic	ons	Perf. Criteria	в
Supply change over	EN50155	Class C2: D	uring a supply	break of 30 ms	Perf. Criteria	в

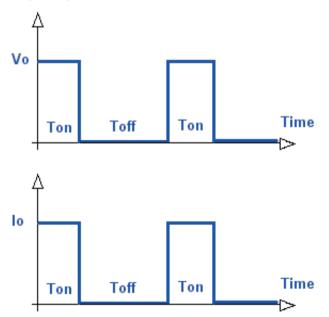
POWERBOX Industrial Line

PQB50U-72S Series 30-50W 12:1 Single Output DC/DC Converter Manual V11

5. Main Features and Functions

5.1 Operating Temperature Range

The PQB50U-72S series converters can be operated within a wide case temperature range of -40°C to 100°C. Consideration must be given to the derating curves when ascertaining maximum power that can be drawn from the converter. The maximum power drawn from open quarter brick models is influenced by usual factors, such as:


- Input voltage range
- Output load current
- Forced air or natural convection
- Heat sink optional

5.2 Output Voltage Adjustment

Section 6.11 describes in detail how to trim the output voltage with respect to its set point. The output voltage on all models is adjustable within the range of +10% to -20%.

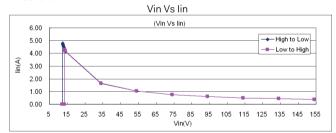
5.3 Over Current Protection

All models have internal over current and continuous short circuit protection. The unit operates normally once the fault condition is removed. At the point of current limit inception, the converter will go into hiccup mode protection.

5.4 Output Over Voltage Protection

The output over voltage protection consists of circuitry that internally limits the output voltage. If more accurate output over voltage protection is required then an external circuit can be used via the remote on/off pin. Note: Please note that device inside the power supply might fail when voltage more than rate output voltage is applied to output pin. This could happen when the customer tests the over voltage protection of unit.

5.5 Remote On/Off

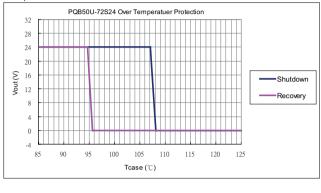

The PQB50U-72S series allows the user to switch the module on and off electronically with the remote on/off feature. All models are available in "positive logic" and "negative logic" (optional) versions. The converter turns on if the remote on/off pin is high (>3.5Vdc to 160Vdc or open circuit). Setting the pin low (0 to <1.2Vdc) will turn the converter off. The signal level of the remote on/off pin, leave the pin open (converter will be on). Models with part number suffix "N" are the "negative logic" remote on/off version. The unit turns off if the remote on/off pin is high (>4.0Vdc to 160Vdc or open circuit). The converter turns on if the on/off pin input is low (0 to<1.2Vdc). Note that the converter is off by default. See 6.15.

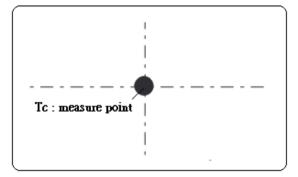
Logic State

(Pin 2)	Negative Logic	Positive Logic
Logic Low – Switch Closed	Module on	Module off
Logic High – Switch Open	Module off	Module on

5.6 UVLO (Unde Voltage Lock Out)

Input under voltage lockout is standard on the PQB50U-72S series unit. The unit will shut down when the input voltage drops below a threshold, and the unit will operate when the input voltage goes above the upper threshold.

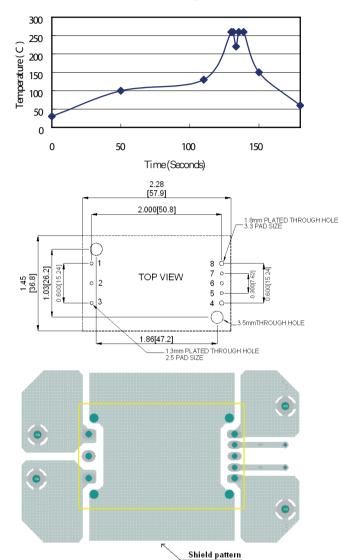



POWERBOX Industrial Line PQB50U-72S Series

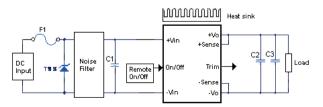
30-50W 12:1 Single Output DC/DC Converter Manual V11

5.7 Over Temperature Protection

These modules have an over temperature protection circuit to safeguard against thermal damage. Shutdown occurs with the maximum case reference temperature is exceeded. The module will restart when the case temperature falls below over temperature recovery threshold. Please measure case temperature of the center part of aluminum baseplate.



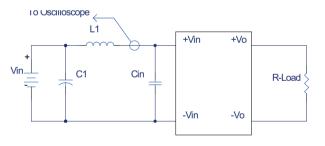
6. Applications


6.1 Recommended Layout, PCB Footprint and Soldering Information

The system designer or end user must ensure that metal and other components in the vicinity of the converter meet the spacing requirements for which the system is approved. Low resistance and inductance PCB layout traces are the norm and should be used where possible. Due consideration must also be given to proper low impedance tracks between power module, input and output grounds. The recommended soldering profile and PCB layout are shown below.

6.2 Connection for Standard Use

The connection for standard use is shown below. An external input capacitor (C1) 68uF for all models is recommended to reduce input ripple voltage. External output capacitors (C2, C3) are recommended to reduce output ripple and noise, 22uF aluminum solid and 1uF ceramic capacitor for all models.


Lead Free Wave Soldering Profile

Symbol	Component	Reference
F1	Input fuse, TVS	Section 7.1
C1	External capacitore	Note
	on input side	
C2,C3	External capacitor	Section 6.13/6.14
	on the output side	
Noise Filter	External input noise filter	Section 7.2
Remote On/Off	External Remote	Section 6.15
	On/Off control	
Trim	External output	Section 6.11
	voltage adjustment	
Heat sink	External heat sink	Section 6.4/6.5/6.6/6.7
+Sense/-Sense		Section 6.11

Note: If the impedance of input line is high, C1 capacitance must be more than above. Use more than two recommended capacitor above in parallel when ambient temperature becomes lower than -20°C.

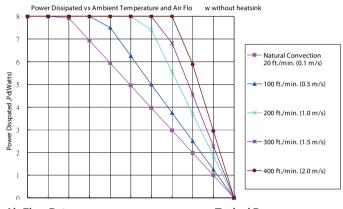
6.3 Input Capacitance at the Power Module

The converters must be connected to low AC source impedance. To avoid problems with loop stability source inductance should be low. Also, the input capacitors (Cin) should be placed close to the converter input pins to de- couple distribution inductance. However, the external input capacitors are chosen for suitable ripple handling capability. Low ESR capacitors are good choice. Circuit as shown as below represents typical measurement methods for reflected ripple current. C1 and L1 simulate a typical DC source impedance. The input reflected-ripple current is measured by current probe to oscilloscope with a simulated source Inductance (L1).

L1: 12uH C1: 68uF ESR<0.7ohm @100KHz Cin: 68uF ESR<0.7ohm @100KHz

6.4. Convection Requirements for Cooling

To predict the approximate cooling needed for the quarter brick module, refer to the power derating curves in section 6.6. These derating curves are approximations of the ambient temperatures and airflows required to keep the power module temperature below its maximum rating. Once the module is assembled in the actual system, the module's temperature should be monitored to ensure it does not exceed 100°C as measured at the center of the top of the case (thus verifying proper cooling).


6.5 Thermal Considerations

The power module operates in a variety of thermal environments; however, sufficient cooling should be provided to help ensure reliable operation of the unit. Heat is removed by conduction, convection, and radiation to the surrounding environment. The example is presented in section 6.6. The power output of the module should not be allowed to exceed rated power (Vo_set x lo_max).

6.6 Power Derating

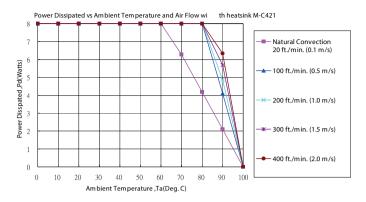
The operating case temperature range of PQB50U-72S series is -40°C to +100°C. When operating the PQB50U-72S series, proper derating or cooling is needed. The maximum case temperature under any operating condition should not exceed 100°C.

The following curve is the derating curve of PQB50U-72S series without heat sink.

Air Flow Rate	Typical Rca
Natural Convection 20ft./min. (0.1m/s)	10.1°C/W
100 ft./min. (0.5m/s)	8.0°C/W
200 ft./min. (1.0m/s)	5.4°C/W
300 ft./min. (1.5m/s)	4.4°C/W
400 ft./min. (2.0m/s)	3.4°C/W

Example:

What is the minimum airflow necessary for a PQB50U-72S12 operating at nominal line voltage, an output current of 4.2A, and a maximum ambient temperature of 40°C?


Solution: Given: V_{in}=72V_{dc} Vo=12V_{dc} lo=4.2A Determine power dissipation (P_d): Pd =Pi-Po=Po(1- η)/ η Pd =12V×4.2A×(1-0.87)/0.87=7.53Watts Determine airflow: Given: P_d =7.53W and Ta=40°C

Check above power de-rating curve: Airflow ≤200ft./min Verify: The maximum temperature rise:

 $\Delta T = Pd \times Rca=7.53 \times 5.4 = 40.67^{\circ}C$

The maximum case temperature: Tc=Ta+ Δ T=80.67°C <100°C Where:

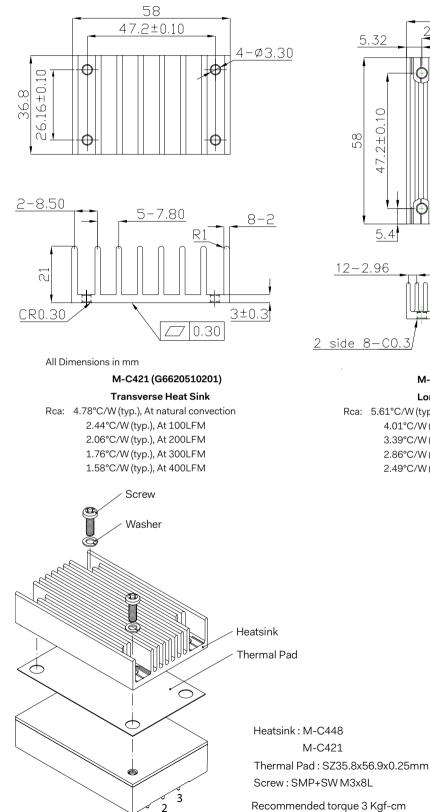
The R_{ca} is thermal resistance from case to ambient environment. The T_a is ambient temperature and the Tc is case temperature.

Air Flow Rate	Typical Rca
Natural Convection 20ft./min. (0.1m/s)	4.78°C/W
100 ft./min. (0.5m/s)	2.44°C/W
200 ft./min. (1.0m/s)	2.06°C/W
300 ft./min. (1.5m/s)	1.76°C/W
400 ft./min. (2.0m/s)	1.58°C/W

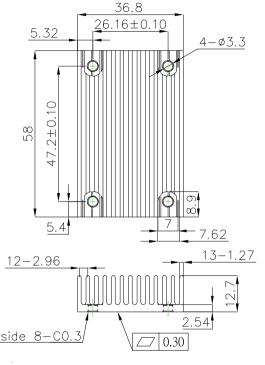
Example (with heatsink M-C421):

What is the minimum airflow necessary for a PQB50U-24S12 operating at nominal line voltage, an output current of 6A, and a maximum ambient temperature of 80°C.

Solution: Given: V_{in}=72V_{dc} Vo=12V_{dc} lo=4.2A Determine power dissipation (P_d): Pd =Pi-Po=Po(1- η)/ η Pd =12×4.2×(1-0.87)/0.87=7.53Watts Determine airflow: Given: P_d =7.53W and Ta=80°C

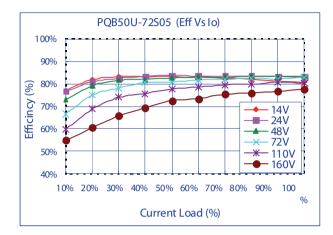

Check above power de-rating curve: Miminum airflow=100ft/min Verify: The maximum temperature rise:

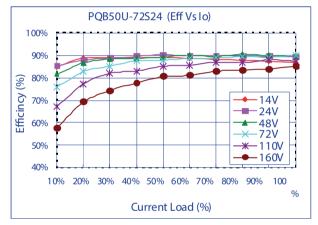
ΔT = Pd × Rca=7.53×2.44=18.37°C

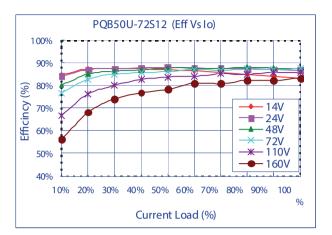

The maximum case temperature: Tc=Ta+ Δ T=98.37°C <100°C Where:

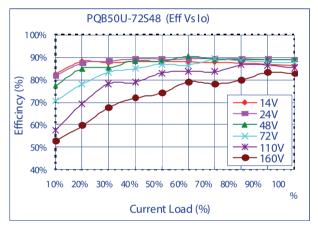
The R_{ca} is thermal resistance from case to ambient environment. The T_a is ambient temperature and the Tc is case temperature.

6.7 Quarter Brick Heat Sinks

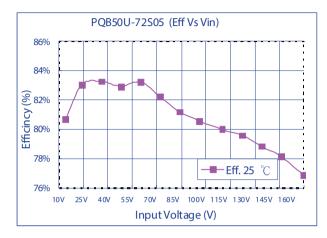

2

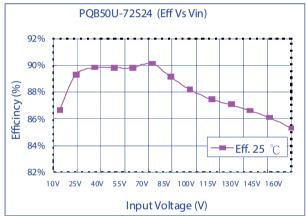


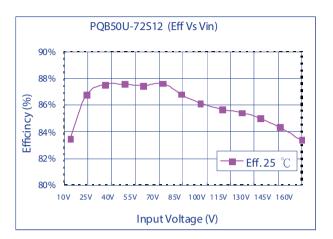

M-C448 (G6620570202) Longitudinal Heat Sink Rca: 5.61°C/W (typ.), At natural convection 4.01°C/W (typ.), At 100LFM 3.39°C/W (typ.), At 200LFM

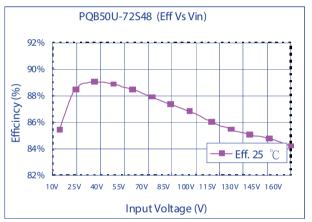

2.86°C/W (typ.), At 300LFM 2.49°C/W (typ.), At 400LFM

6.8 Efficiency VS. Load









6.8 Efficiency VS. Vin

6.10 Test Set-Up

The basic test set-up to measure parameters such as efficiency and load regulation is shown as below. When testing the modules under any transient conditions please ensure that the transient response of the source is sufficient to power the equipment under test. We can calculate the

· Efficiency

· Load regulation and line regulation.

The value of efficiency is defined as:

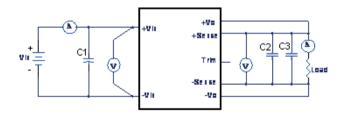
$$\eta = \frac{Vo \times Io}{Vin \times Iin} \times 100\%$$

Where:

V_o is output voltage, I_o is output current, V_{in} is input voltage, l_{in} is input current.

The value of load regulation is defined as:

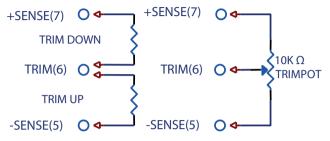
$$Load.reg = \frac{V_{FL} - V_{NL}}{V_{NL}} \times 100\%$$

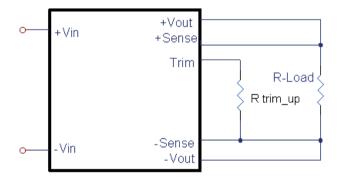

Where:

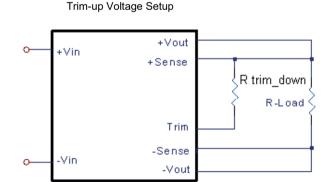
V_{FI} is the output voltage at full load V_{NI} is the output voltage at no load

The value of line regulation is defined as:

$$Line.reg = \frac{V_{HL} - V_{LL}}{V_{LL}} \times 100\%$$


Where: V_{HL} is the output voltage of maximum input voltage at full load. V₁₁ is the output voltage of minimum input voltage at full load.


PQB50U-72S Series Test Setup C1: 68uF/200V ESR<0.7Ω C2: 1uF/ 1206 ceramic capacitor C3: 22uF aluminum solid capacitor.


6.11 Output Voltage Adjustment

Output may be externally trimmed (-20% to +10%) with a fixed resistor or an external trim pot as shown (optional). Model specific formulas for calculating trim resistors are available upon request as a separate document.

In order to trim the voltage up or down, one needs to connect the trim resistor either between the trim pin and -Sense for trim-up or between trim pin and +Sense for trim-down. The output voltage trim range is -20% to +10%. This is shown:

Trim-down Voltage Setup

Vout (V)	R1 (KΩ)	R2 (KΩ)	R3 (KΩ)	Vr (V)	Vf (V)
5V	3	6.8	2.4	1.24	0.5
12V	9.1	24	5.1	2.5	0.5
24V	20	68	7.5	2.5	0.5
48V	36	82	5.1	2.5	0.5

Trim Resistor Values

The value of Rtrim_up defined as:

$$R_{trim_up} = \left(\frac{R_{1}(V_{r} - V_{f}(\frac{R_{2}}{R_{2} + R_{3}}))}{V_{o} - V_{o_nom}}\right) - \frac{R_{2}R_{3}}{R_{2} + R_{3}}$$
(K Ω)

Where: R trim_up is the external resistor in KΩ.Vo_nom is the nominal output voltage.Vo is the desired output voltage.R1, R2, R3 and Vr are internal components.

For example, to trim-up the output voltage of 12V module (PQB50U-72S12) by 5% to 12.6V, R trim_up is calculated as follows:

Vo - Vo_nom = 12.6 - 12 = 0.6V R1 = 9.1KΩ, R2 =24KΩ, R3 = 5.1KΩ, Vr= 2.5V, Vf=0.5

$$R_{trim_up} = \frac{18.947}{0.6} - 4.206 = 27.45 \,(\mathrm{K}\Omega)$$

The value of R trim_down defined as:

$$R_{trim}_{down} = \frac{R_1 \times (V_o - V_r)}{V_o \quad nom - V_o} - R_2 \quad (K\Omega)$$

Where: R trim_down is the external resistor in Kohm. Vo_nom is the nominal output voltage. Vo is the desired output voltage. R1, R2, R3 and Vr are internal components.

For example, to trim-down the output voltage of 12V module (PQB50U-48S12) by 5% to 11.4V, R trim-down is calculated as follows : Vo_nom – Vo = 12 – 11.4 = 0.6V R1 = 9.1K Ω , R2 = 51K Ω , Vr= 2.5V

 $R_{trim_down} = \frac{9.1 \times (11.4 - 2.5)}{0.6} - 24 = 110.98 \text{ (K}\Omega\text{)}$

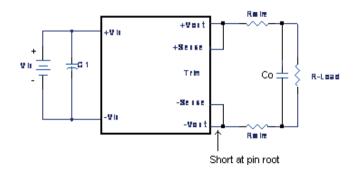
The typical value of Rtrim_up

	5V	12V	24V	48V
Trim up %	Rtrim_up	(ΚΩ)		
1%	50.45	154.1	164.0	147.3
2%	24.34	74.95	78.64	71.29
3%	15.63	48.56	50.18	45.93
4%	11.28	35.37	35.94	33.24
5%	8.67	27.45	27.40	25.63
6%	6.93	22.17	21.71	20.56
7%	5.69	18.41	17.64	16.94
8%	4.75	15.58	14.59	14.22
9%	4.03	13.38	12.22	12.10
10%	3.45	11.62	10.32	10.41

The typical value of Rtrim_down

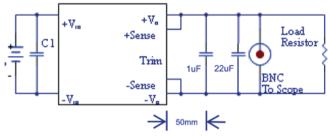

	5V	12V	24V	48V
Trim down %	Rtrim_do	wn (KΩ)		
1%	215.8	687.3	1703	3294
2%	103.0	327.1	807.8	1588
3%	65.40	207.0	509.2	1019
4%	46.60	147.0	359.9	735.1
5%	35.32	110.9	270.3	564.5
6%	27.80	86.96	210.6	450.7
7%	22.43	69.81	167.9	369.5
8%	18.40	56.95	135.9	308.5
9%	15.27	46.94	111.0	261.1
10%	12.76	38.94	91.16	223.2
11%	10.71	32.39	74.87	192.2
12%	9.00	26.93	61.30	166.3
13%	7.55	22.31	49.82	144.5
14%	6.31	18.35	39.97	125.7
15%	5.24	14.92	31.44	109.5
16%	4.30	11.92	23.97	95.28
17%	3.47	9.277	17.39	82.73
18%	2.73	6.923	11.53	71.58
19%	2.07	4.817	6.298	61.60
20%	1.48	2.921	1.583	52.62

6.12 Output Remote Sensing


The PQB50U-72S series converter has the capability to remotely sense both lines of its output. This feature moves the effective output voltage regulation point from the output of the unit to the point of connection of the remote sense pins. This feature automatically adjusts the real output voltage of the PQB50U-72S series in order to compensate for voltage drops in distribution and maintain a regulated voltage at the point of load. The remote-sense voltage range is:

[(+Vout) - (-Vout)] - [(+Sense) - (-Sense)] < 10% of Vo_nominal

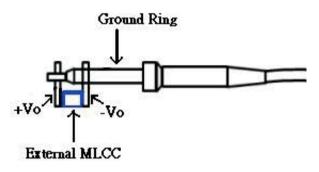
When remote sense is in use, the sense should be connected by twistedpair wire or shield wire. If the sensing patterns short, heave current flows and the pattern may be damaged. Output voltage might become unstable because of impedance of wiring and load condition when length of wire is exceeding 400mm. This is shown in the schematic below.



If the remote sense feature is not to be used, the sense pins should be connected locally. The +Sense pin should be connected to the +Vout pin at the module and the -Sense pin should be connected to the -Vout pin at the module. Wire between +Sense and +Vout and between -Sense and -Vout as short as possible. Loop wiring should be avoided. The converter might become unstable by noise coming from poor wiring. This is shown in the schematic below.

Note: Although the output voltage can be varied (increased or decreased) by both remote sense and trim, the maximum variation for the output voltage is the larger of the two values not the sum of the values. The output power delivered by the module is defined as the voltage at the output terminals multiplied by the output current. Using remote sense and trim can cause the output voltage to increase and consequently increase the power output of the module if output current remains unchanged. Always ensure that the output power of the module remains at or below the maximum rated power. Also be aware that if $V_{o.set}$ is below nominal value, $P_{out.max}$ will also decrease accordingly because $I_{o.max}$ is an absolute limit. Thus, $P_{out.max} = V_{o.set} \times I_{o.max}$ is also an absolute limit.

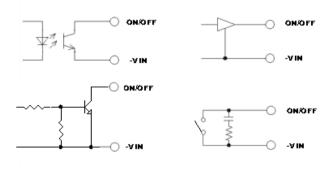
6.13 Output Ripple and Noise



Output ripple and noise measured with 22uF aluminum solid and 1uF ceramic capacitor across output, A 20 MHz bandwidth oscilloscope is normally used for the measurement.

The conventional ground clip on an oscilloscope probe should never be used in this kind of measurement. This clip, when placed in a field of radiated high frequency energy, acts as an antenna or inductive pickup loop, creating an extraneous voltage that is not part of the output noise of the converter.

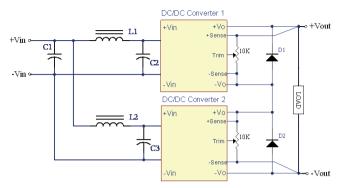
Another method is shown in below, in case of coaxial- cable/BNC is not available. The noise pickup is eliminated by pressing scope probe ground ring directly against the -Vout terminal while the tip contacts the +Vout terminal. This makes the shortest possible connection across the output terminals.



6.14 Output Capacitance

The PQB50U-72S series converters provide unconditional stability with or without external capacitors. For good transient response, low ESR output capacitors should be located close to the point of load (<100mm). PCB design emphasizes low resistance and inductance tracks in consideration of high current applications. Output capacitors with their associated ESR values have an impact on loop stability and bandwidth. Powerbox converters are designed to work with load capacitance to see technical specifications.

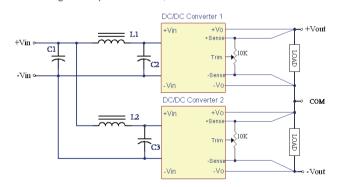
6.15 Remote On/Off Circuit


The converter remote On/Off circuit built-in on input side. The ground pin of input side Remote On/Off circuit is –Vin pin. Refer to 5.5 for more details. Connection examples see below.

Remote On/Off Connection Example

6.16 Series Operation

Series operation is possible by connecting the outputs two or more units. Connection is shown in below. The output current in series connection should be lower than the lowest rate current in each power module.



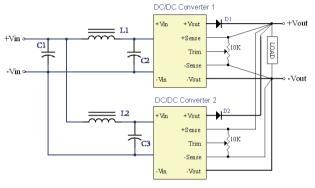
Simple Series Operation Connect Circuit

L1, L2: 1.0uH C1, C2, C3: 68uF/200V ESR<0.7Ω

Note:

 If the impedance of input line is high, C1, C2, C3 capacitance must be more than above. Use more than two recommended capacitor above in parallel when ambient temperature becomes lower than -20°C.
Recommend Schottky diode (D1, D2) be connected across the output of each series connected converter, so that if one converter shuts down for any reason, then the output stage won't be thermally overstressed. Without this external diode, the output stage of the shut-down converter could carry the load current provided by the other series converters, with its MOSFETs conducting through the body diodes. The MOSFETs could then be overstressed and fail. The external diode should be capable of handling the full load current for as long as the application is expected to run with any unit shut down. Series for ±output operation is possible by connecting the outputs two units, as shown in the schematic below.

Simple ±Output Operation Connect Circuit

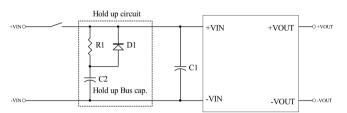

L1, L2: 1.0uH C1, C2, C3: 68uF/200V ESR<0.7Ω

Note:

If the impedance of input line is high, C1, C2, C3 capacitance must be more than above. Use more than two recommended capacitor above in parallel when ambient temperature becomes lower than -20°C.

6.17 Parallel/Redundant Operation

The PQB50U-72S series parallel operation is not possible. Parallel for redundancy operation is possible by connecting the units as shown in the schematic below. The current of each converter become unbalance by a slight difference of the output voltage. Make sure that the output voltage of units of equal value and the output current from each power supply does not exceed the rate current. Suggest use an external potentiometer to adjust output voltage from each power supply.


Simple Redundant Operation Connect Circuit L1, L2: 1.0uH C1, C2, C3: 68uF/200V ESR<0.7Ω

Note:

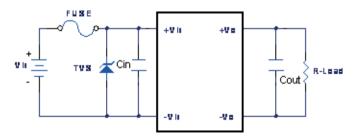
If the impedance of input line is high, C1, C2, C3 capacitance must be more than above. Use more than two recommended capacitor above in parallel when ambient temperature becomes lower than -20°C.

6.18 Hold Up Time

Hold up time is defined as the duration of time that DC/DC converter output will remain active following a loss of input power. To meet power supply interruptions, an external circuit is required, shown below.

D1:200V/10A R1:100Ω/10W C1: 68uF/200V ESR<0.7Ω

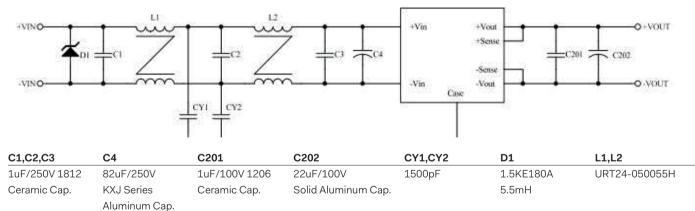
24Vin	36Vin	48Vin
3300uF	1100uF	600uF
9400uF	3300uF	1700uF
72Vin	96Vin	110Vin
250uF	150uF	120uF
730uF	410uF	330uF
	3300uF 9400uF 72Vin 250uF	3300uF 1100uF 9400uF 3300uF 72Vin 96Vin 250uF 150uF


POWERBOX Industrial Line PQB50U-72S Series

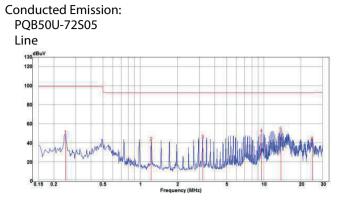
30-50W 12:1 Single Output DC/DC Converter Manual V11

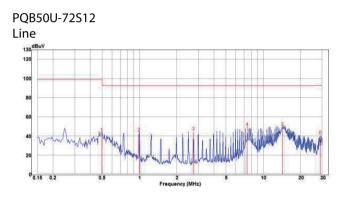
7. Safety & EMC

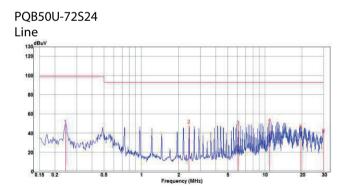
7.1 Input Fusing and Safety Considerations

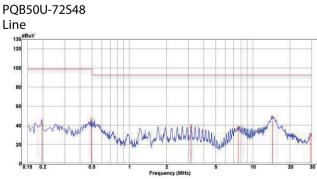

The PQB50U-72S series converters have no internal fuse. In order to achieve maximum safety and system protection, always use an input line fuse. We recommended a 6A fast acting fuse for all models. It is recommended that the circuit have a transient voltage suppressor diode (TVS) across the input terminal to protect the unit against surge or spike voltage and input reverse voltage (as shown).

The external TVS is required if CQB50W12 series has to meet EN61000-4-4, EN61000-4-5. The PB50U-72S series recommended a TVS (Littelfuse 1.5KE180A) to connect parallel.

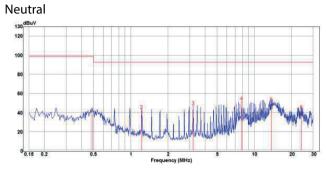

7.2 EMC Considerations

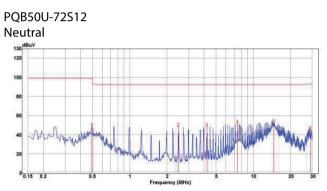

EMI Test standard: EN50121-3-2 Conducted & Radiated Emission Test Condition: Input Voltage: 110Vdc, Output Load: Full Load (1) EMI meet EN55011 / EN55022 / EN50121-3-2:2006

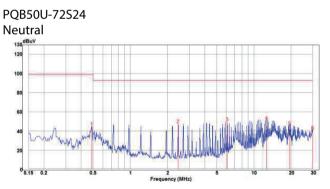


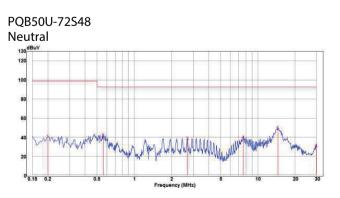

Note: C4 UNITED CHEMI-CON KXJ series or equivalent, CY1, CY2 MURATA Y1 capacitors or equivalent, L1, L2

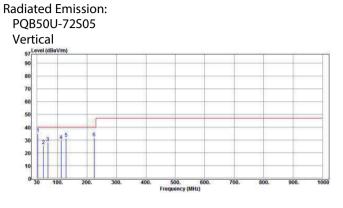
BULL WILL URT24-05055H or equivalent

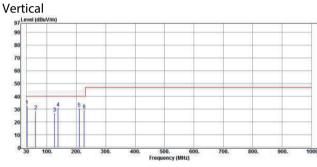


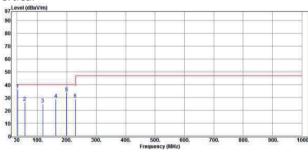


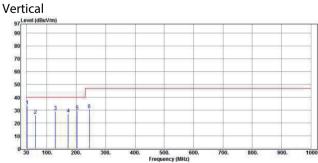


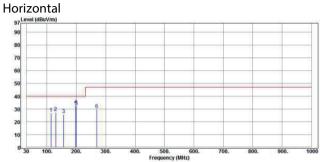


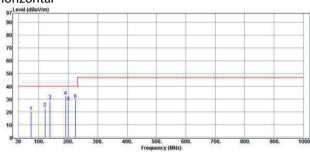

PQB50U-72S05

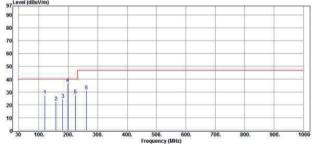


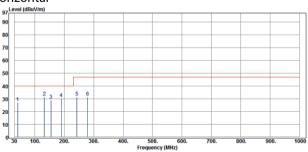


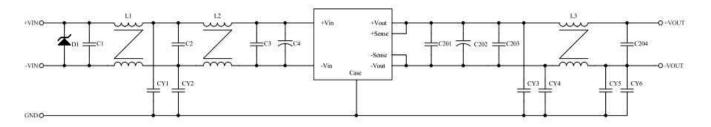



PQB50U-72S24 Vertical

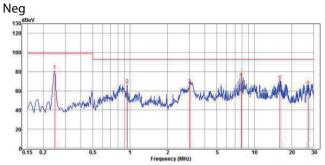

PQB50U-72S48

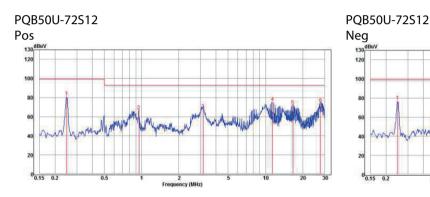

PQB50U-72S05

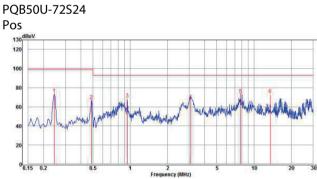


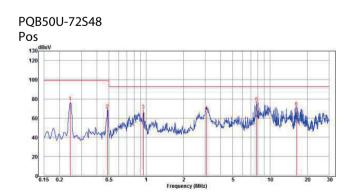


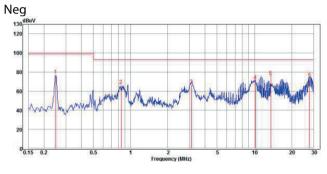
(2) EMI meet EN50121-3-2:2015

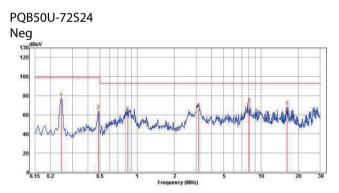

C1,C2,C3	C4	C201	C202	C203,C204	CY1,CY2	CY3,CY4,CY5,CY6
1uF/250V 1812	82uF/250V KXJ	1uF/100V 1206	22uF/100V	2.2uF/100V	1500pF	0.047uF/1KV 1812
Ceramic Cap.	Series	Ceramic Cap.	Solid Aluminum	1210 Ceramic		Ceramic Cap.
	Aluminum Cap.		Cap.	Cap.		
D1	L1,L2	L3				
1.5KE180A	URT24-050055H	055H Core P/N: CM15*10*4.5 Winding: 1.0mm*2 / 4Turns				
	5.5mH					
		0.4mH				

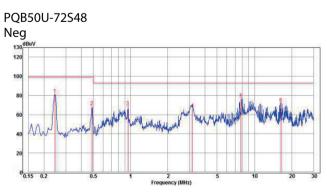

Note: C4 UNITED CHEMI-CON KXJ series or equivalent, CY1, CY2 MURATA Y1 capacitors or equivalent, L1, L2 BULL WILL URT24-05055H or equivalent.

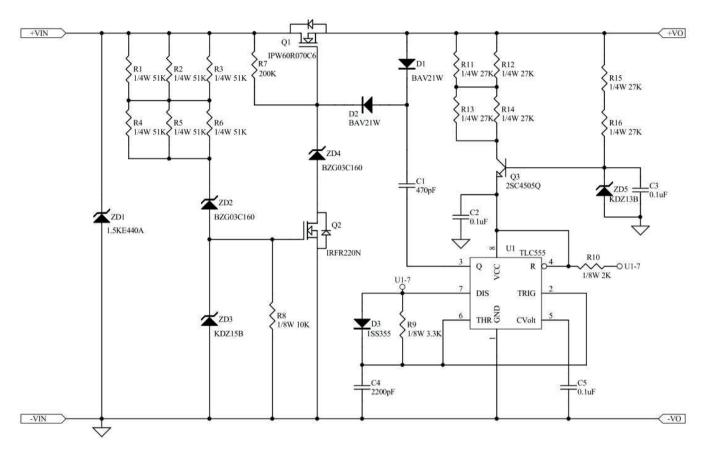

Output Conducted Emission: PQB50U-72S05



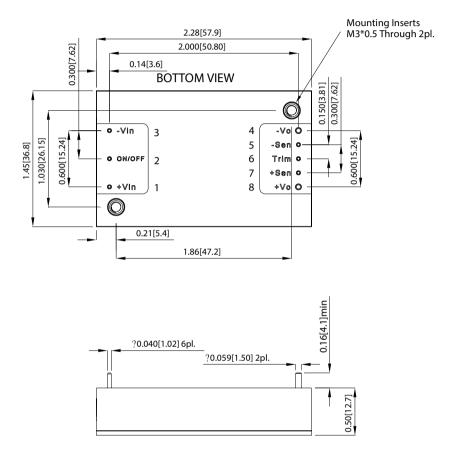

PQB50U-72S05







7.3. Suggested Configuration for RIA12 Surge Test


Note: Q1 suggest use Infineon IPW60R070C6 or equivalent, and provide good heat dissipation conditions

8. Mechanical Specifications

8.1 Mechanical Outline Diagrams

All Dimensions In Inches(mm)

Tolerances Inches: X.XX= ±0.02 , X.XXX= ±0.010 Millimeters: X.X= ±0.5 , X.XX=±0.25

PIN CONNECTION		
PIN	Function	
1	+V Input	
2	On/Off	
3	-V Input	
4	-V Output	
5	-Sense	
6	Trim	
7	+Sense	
8	+V Output	